
Model Checking Process Scheduling over
Multi-core Computer System with MSVL

Xinfeng Shu1(B) and Zhenhua Duan2

1 School of Computer Science,
Xi’an University of Posts and Communications, Xi’an 710061, China

shuxf@xupt.edu.cn
2 Institute of Computing Theory and Technology,

Xidian University, Xi’an 710071, China
zhhduan@mail.xidian.edu.cn

Abstract. To solve the problem that software testing cannot meet the
verification needs of process scheduling over multi-core computer system,
a model checking approach with MSVL is adapted to verify the cor-
rectness of process scheduling. Firstly, the grammar of MSVL is briefly
introduced; further, a general model supporting the most commonly used
scheduling algorithms for multi-core computer is formalized by MSVL
program; finally, as a case study, the safeness of the processes scheduler
with the earliest deadline first(EDF) scheduling algorithm over a 2-core
CPU is verified with MSV toolkit, which indicates the proposed approach
can effectively solve the verification problems of process scheduling over
multi-core CPU.

Keywords: Process scheduling · System modeling · Verification · Model
checking

1 Introduction

Process scheduler is a critical component of the modern operating system. Its
correctness is one of the most important factors affecting the safety and reliability
of the computer system. How to ensure the correctness of the process scheduling
is of great importance to the system developer. Currently, testing is the most
important means to check the correctness of process scheduling. However, the
method can only show the existence of the errors, but can not prove their absence.
What’s more, the executions of the processes over multi-core CPU become really
parallel, and each process proceeds in a unpredictable speed under the influence
of other processes. Hence, the classical testing method can hardly meet the
verification needs of process scheduling under such circumstance.

This research is supported by Natural Science Foundation of Education Bureau of
Shaanxi Province, China (No.11JK1037, No.15JK1678), Natural Science Founda-
tion of Shaanxi Province, China (No.2015JM6359), the NSFC Grant No.61133001,
No.61202038, No.61272117, No.61272118 and No.61322202.

c© Springer International Publishing Switzerland 2016
S. Liu and Z. Duan (Eds.): SOFL+MSVL 2015, LNCS 9559, pp. 103–117, 2016.
DOI: 10.1007/978-3-319-31220-0 8

104 X. Shu and Z. Duan

In the past decade, quite some researches have been down in formal specifi-
cation and verification of process scheduling with various approaches. In [1], the
authors employ the μCRL process algebra to model the scheduling and apply the
μCRL model checker toolset to find the near-optimal solutions. In [2], the author
uses Promela to describe a job-shop scheduling problems and adds Branch-and-
Bound techniques to the LTL property to find a solution effectively. In [3], the
real-time system with a preemptive scheduling policy is modeled as a scheduling
time Petri Net and the timed properties are verified using HyTech, an automatic
tool for the analysis of embedded systems.

Projection Temporal Logic (PTL) [4–6] is an interval based first order tem-
poral logic with a key temporal construct, (P1, ..., Pm)prjQ, and supports
both finite and infinite time. Further, Propositional Projection Temporal Logic
(PPTL), the propositional subset of PTL, has the expressiveness power of the
full regular expressions [7], which can be used to specify the properties of the
hardware or software systems to be verified.

The language Modeling, Simulation and Verification Language (MSVL) is an
executable subset of PTL with framing technique [8,9]. It supports the commonly
used data types (e.g., char, integer, pointer, . . .), data structures (e.g., array,
user-defined structure, list, . . .), boolean and arithmetic expressions. Besides,
MSVL provides many powerful programming statements, such as frame, if, while,
parallel (||), . . ., and has ability to model, simulate and verify the concurrent and
reactive systems within a same logical system [10].

In recent years, MSVL has been successfully applied to verify the typical
hardware and software systems such as virtual memory and embedded operat-
ing system [11–15]. This paper extends the application of MSVL based model
checking approach to verify the process scheduling in a multi-core CPU computer
system. To this end, a general system model supporting the typical periodic and
non-periodic processes as well as the most commonly used scheduling algorithms
is formalized by MSVL program. Then, an example is given to illustrate how
this method works.

The rest of paper is organized as follows. In the next section, the language
MSVL is briefly introduced. In Sect. 3, the system model of process scheduling
over multi-core CPU is formalized. In Sect. 4, a case study is given to show how
the proposed method works. Finally, conclusions are drawn in Sect. 5.

2 Modeling, Simulation and Verification Language

The language MSVL is an executable subset of PTL [5]. The grammar of MSVL
consists of expressions and statements, where expressions can be regarded as the
PTL terms, and statements as the PTL formulas [9,11].

Expression. Let D denote the data domain, which includes integers, string,
lists, sets, etc. The expression e and boolean expression b of MSVL are defined
inductively as follows:

Model Checking Process Scheduling over Multi-core 105

e:: = d | x | ©e | f(e1, . . . , em)
b:: = true | false | e1 = e2 | ρ(e1, ..., em) | ¬b | b1 ∧ b2

where d ∈ D is a constant; x ∈ V is a variable; f is a function and ρ is a predicate
both defined over D.

Statement. The elementary statements in MSVL are defined as follows:

(1) Immediate Assign x ⇐e
(2) Unit Assignment x :=e

(3) Conjunction S1 and S2
def= S1 ∧ S2

(4) Selection S1 or S2
def= S1 ∧ S2

(5) Next next S
def= ©P

(6) Always always S
def= �P

(7) Termination empty
def= ¬©true

(8) Skip skip
def= © ε

(9) Sequential S1 ;S2
def= (S1, S2) prj empty

(10) Local exist x : S
def= ∃ x : S

(11) State Frame lbf(x)
(12) Interval Frame frame(x)
(13) Projection (S1, . . . , Sm) prj S

(14) Condition if b then S1 else S2
def= (b → S1) ∧ (¬b → S2)

(15) While while b do S
def= (b ∧ S)� ∧ �(ε → ¬b)

(16) Await await(b) def=
∧

x∈Vb
frame(x) ∧ �(ε ↔ b)

(17) Parallel S1||S2
def= ((S1 ;true) ∧ S2) ∨ (S1 ∧ (S2 ;true))

∨ (S1 ∧ S2)

where x is a variable, e is an arbitrary expression, b is a boolean expression, and
S1, . . . , Sm, S are all MSVL statements. The immediate assignment x ⇐e, unit
assignment x :=e, empty, lbf(x) and frame(x) are basic statements, and the
left composite ones.

The immediate assignment x ⇐e can be defined as x = e ∧ px, where sub-
formula x = e denotes the value of variable x is equal to that of the arithmetic
expression e, and atomic proposition px is the assignment flag for variable x.
The unit assignment x := e can be defined as ©x = e ∧ ©px, which means the
value of variable x in the next equals to that of e and the assignment flag px

holds in the next state.
The state frame statement lbf(x) means that the value of x in the current

state is equal to that in the previous state if there is no assignment to x, i.e., its
assignment flag px does not hold; and the interval statement frame(x) means
that variable x always keeps its old value in the previous state if variable x is
not assigned with a new value. The means of the left statements can be found
in [10,11] and hence are omitted here.

106 X. Shu and Z. Duan

To use MSVL to formal verification, a model checking tool named MSV
toolkit has been developed. It has three modes, i.e., modeling, simulation and
verification, where simulation finds a model for the MSVL program, while mod-
eling finds all models, and verification is based on the model checking approach.

3 Modeling of Process Scheduling over Multi-core CPU

Figure 1 gives a sketch of process scheduling in a typical multi-core computer
system. The hardware resource of the system contains a m-core CPU(m ≥ 1),
and n(n ≥ 1) I/O devices of all kinds. The process queues manage all the
processes waiting for the CPU or other I/O device. Whenever a resource is
free, the Process Scheduler will select an appropriate process with a standing
request for the resource and put it to execute. The computer system allows many
processes to execute concurrently, however, a resource can only be occupied by
one process at any time.

Fig. 1. Sketch of process scheduling over Multi-core CPU

3.1 Resource Description

Since one kind of hardware may have many physical devices, e.g., CPU may have
more than 2 cores, we introduce the concept of logical device for the convenience
of resource allocation. The name of the logical device is in fact the kind name
of the corresponding physical device. Moreover, we assign each logical (physical)
device a unique non-negative integer to identify each device. Thus, a process
only needs to apply for logical devices during its execution, and the scheduler
will allocate the specific physical ones to it and enable the process to run.

Let N0 and N1 be the set of non-negative and positive integers respectively.
The logical and physical device can be depicted as follows.

Model Checking Process Scheduling over Multi-core 107

Definition 1 (Physical Device). A physical device pdev is a tuple defined as

pdev:: = (id, status, ldid, cproc),

where id ∈ N0 is the device identifer; status ∈ {0, 1} is the device status (0
denotes idle, 1 means busy); ldid is the identifier of the corresponding logical
device; cproc is the process currently using the device.

Definition 2 (Logical Device). A logical device ldev is a tuple defined as

ldev:: = (id, type, dlist, pque),

where id ∈ N0 is the device identifer; type ∈ {0, 1} is the device type (0 denotes
exclusive, and 1 means shareable); dlist is the list of the physical devices belong-
ing to the logical device; pque is the queue of the processes standing for the
device.

3.2 Process Description

Intuitively, the execution of a process is in fact alternatively using different
resource for a certain time in sequence according to the process code. Thus,
from the view point of using the resources, the process code can be depicted by a
sequence of resource requirement. To this end, we employe Resource Requirement
List (RRL) to describe the code of a process.

Definition 3 (Resource Requirement List). Let id be the identifier of a
logical device, and t ∈ N1 be the time of the device to use. The resource require-
ment section (RRS) sec, composed resource requirement section (CRRS) cse
and resource requirement list (RRL) rrl are defined inductively as follows:

sec:: = (id, t)
rss:: = sec | rss1, rss2

cse:: = (rss, t)
rrl:: = rss | csen | cseω

where RRS (id, t) denotes needing device id for t units of time; CRRS (rss, t)
(t ≥ ∑

sec∈rss sec.t) is used to describe the resource requirement of a periodic
task, which means the period lasts t units of time and the resource requirement
within a period is rss. csen(n ∈ N1) and cseω are used to describe the finite
and infinite periodic tasks respectively. The former represents the CRRS cse will
be repeat for n times, and the later stands for the CRRS cse will be repeat for
infinitely many times.

Now we give two examples to show how RRL works to describe a process.
Without loss of generality, we suppose the computer is equipped with the devices
as shown in Table 1. If the RRLs of process P1 and P2 are as follows:

rrl1 = (1, 10), (4, 5), (1, 2), (2, 10)
rrl2 = ((1, 1), (3, 2), (1, 2), 10)ω

108 X. Shu and Z. Duan

then, the rrl1 of process P1 denotes P1 will use the devices CPU, HD, CPU, PRT
with the lasting time 10, 5, 2, 10 in sequence. Further, rrl2 means the process
P2 is a infinite periodic task with time period 10, and moreover, it needs CPU,
NET and HD for 1, 2 and 2 units of time respectively in a task period.

Table 1. Check list between logical devices and physical ones

Logical Device Physical Device

ID Name Type ID Name

1 CPU 1 1 CPU Core 1

2 CPU Core 2

2 PRT 0 3 Laser Printer

3 NET 0 4 Network Card

4 HD 0 5 Hard Disk

In consideration of modeling needs for the typical scheduling algorithms, we
employ a 8-tuple to describe a process defined as follows.

Definition 4 (Process). The process proc is define as:

proc:: = (pid, rrl, ldid, pro, stime, ltime, tslice, dline)

where pid, ldid, pro, stime, ltime, tslice, dline ∈ N0; pid is the identifier of the
process; rrl is the resource requirement list; ldid is the identifier of the logical
device that the process is currently standing for; pro denotes the priority; stime
records the start time when the process begins to apply for the current resource;
ltime stores the left required time for current device; tslice records the time slice
used in a time sharing system; dline keeps the deadline of the current period
and it takes effect only if the process is a periodic task.

3.3 System Modeling

The modeling strategy of process scheduling over multi-core computer system
is depicted in Fig. 2. The system model consists of three parts, i.e., Scheduler,
Physical Devices and System Clock. Each of them will be formalized by a sub-
program with MSVL in the following subsections. For simplicity, we ignore the
execution time of the Scheduler.

Roughly speaking, the task of the Scheduler is to allocate resource for the
waiting process. Firstly, the Scheduler keeps on waiting for the scheduling signal
sigSch, which denotes there exist some processes applying for system resources.
In case of sigSch received, it sets variable cStatus = 0 to pause the System Clock
and allocates needed resources to the standing processes according to scheduling
algorithm. Then, the Scheduler sends signal sigRun to the allocated resources
and enable them to run. Moreover, it set variable cStatus = 1 to resume System

Model Checking Process Scheduling over Multi-core 109

Scheduler System Clock

allocate resource

T:=T+1

ltime:=ltime-1

sigRun

[cSatus=1]

skip

[cStatus=0]
compute executing

conditon cdt
cStatus=false

cStatus=true

sigSch

sigTime

[sdt=true]

sigTime

sigSch

rearrange
process

sigRun

[sdt=false]

Physical DevicesPhysical DevicesPhysical Devices

Fig. 2. Activity diagram of the system model

Clock again. After that, the Schedule continues to wait for the occurrence of
another scheduling event.

For each physical device, we design a subprogram to describe its running. The
execution of a process on a device is abstracted as the decreasing left required
time of the resource under the driven of the signal sigT ime from the System
Clock. Initially, the physical device keeps idle and waits for the coming of signal
sigRun. When the signal sigRun arrives, the device computes the executing
condition cdt (the details can be found in Subsect. 3.3). If cdt holds, the device
decreases the left required time ltime by 1 on the arriving of signal sigT ime
and continues to run the process; otherwise, it rearranges the process int.o the
waiting process queue according to the left resource requirement and send a
signal sigSch to the Scheduler. Finally, the device goes on waiting for another
execution.

The task of System Clock is to keep the synchronization among physical
devices like a real computer does. It just keeps on increasing the system time T
and sending signal sigT ime to each physical device in case of cStatus = 1.

In the following, we firstly employ MSVL structures to describe the data
structures used in system modeling, and then use MSVL functions to simulate
the running of Physical Device, Scheduler and System Clock.

Data Structures. We use linked list to manage the data of logical devices,
physical devices and processes. According to the Definitions 1 and 2, the types
of list nodes for physical device and logical device are defined respectively with
MSVL as follows.

110 X. Shu and Z. Duan

struct pdev t // node definition for physical device
{

int id and // physical device id
int status and // device status:0 for free and 1 for busy
int ldid and // corresponding logical device id
process t *cproc and // pointer of the process using the device
pdev t *nexts // pointer of the next node

};

struct ldev t // node definition for logical device
{

int id and // logical device id
int type and // device type:0 for exclusive and 1 for shareable
pdev t *dlist and // physical device list
process t *pque and // queue of processes standing for the device
ldev t *nexts // pointer of the next node

};

According to the Definition 3, the types of list nodes for resource requirement
section and resource requirement list are defined as follows.

struct sec t // node definition for resource requirement section
{

int id and // logical device id
int t and // time required
sec t *nexts // pointer of the next node

};

struct rrl t //node definition for resource requirement list
{

sec t *secs and // pointer of the resource requirement sections
int ptime and // 0 for non periodic task, otherwise the period time
int reptimes and // 0 denotes the task is an infinite periodic task,

// otherwise, the number of periods to be repeated
rrl t *nexts // pointer of the next node

};

The list node type for processes (Definition 4) is defined as follows.

struct process t //node definition for process
{

int pid and // identifier of the process
rrl t *rrl and // resource requirement list
int ldid and // identifier of the logical device
int pro and // priority
int stime and // start time to wait for the device
int ltime and // left required time
int tslice and // time slice
int dline and // deadline of the current period
process t *nexts // pointer of the next node

};

Model Checking Process Scheduling over Multi-core 111

Table 2. Priority functions of typical scheduling algorithms

Algorithm name Function definition

First Come First Service(FCFS) Hp(Pi, Pj)
def
= Pi.stime < Pj .stime

Shortest Process First(SPF) Hp(Pi, Pj)
def
= Pi.ltime < Pj .ltime

Highest Response Ratio Next Hp(Pi, Pj)
def
= (T − Pi.stime)/Pi.ltime

(HRRN) < (T − Pj .stime)/Pj .ltime

Highest Priority Next(HPN) Hp(Pi, Pj)
def
= Pi.pro < Pj .pro

Round Robin(RR) Hp(Pi, Pj)
def
= Pi.st < Pj .st

Multilevel Feedback Queue Hp(Pi, Pj)
def
= (Pi.pro = Pj .pro

(MFQ) and Pi.pro < Pj .pro)

or (Pi.pro < Pj .pro)

Rate Monotonic(RM) Hp(Pi, Pj)
def
= Pi.ltime < Pj .ltime

Earliest Deadline First(EDF) Hp(Pi, Pj)
def
= Pi.dline < Pj .dline

Scheduler Modeling. The priority of a process to acquire CPU or I/O devices
is decided by the scheduling algorithm. Let Hp(Pi, Pj) be the priority function
between processes Pi and Pj which are both waiting for a same resource. Based
on the data items of the process, it is not hard to write out the priority function
for a commonly used scheduling algorithms. Table 2 gives the definitions of the
priority functions for the typical scheduling algorithms, where variable T records
the current system time. One can chooses the corresponding priority function in
case of scheduling verification.

Let ldSet, sigSch, cStatus be the variables saving the header pointer of the
logical device list, scheduling signal and status of System Clock respectively.
Further, we use the attribute status of physical device to keep its running signal.
Moreover, we employ boolean variable alPrem to denotes whether the shared
resource allows to be preempted according to the scheduling algorithm. Note
that, before calling function Sch, the processes in the waiting queue of a logical
device must be arranged on the descending ordered of priority according to the
scheduling algorithm.

According to the strategy depicted in Fig. 3, the function Sch for the Sched-
uler in MSVL is as follows.

function Sch(ldev t *ldSet, int *sigSch, int alPrem, int *cStatus)
{

frame (pLogDev, pPhyDev, fPhyDev, rtn) and (
.; /* Define and initialize local variables*/
while (true) {

await(*sigSch=1) ; /*Wait for the scheduling signal*/
*sigSch:=0 and *cStatus:=0; /*Pause the system clock */
pLogDev:=ldSet;
while (pLogDev!=NULL) { /*Process each logical device*/

pPhyDev:=pLogDev→dlist;
/*Firstly, allocate the idle physical devices to processes*/

112 X. Shu and Z. Duan

while(pPhyDev!=NULL and pLogDev→pque!=NULL) {
.; /* allocate the idle device*/

};
/*Then, preempt device from the process with lower priority*/
if(alPrem=1 and pLogDev→type=1) then { /*shareable device*/

fPhyDev:=pLogDev→dlist;
while(fPhyDev !=NULL and pLogDev→pque!=NULL){

pPhyDev:=pLogDev→dlist→nexts;
while (pPhyDev!=NULL){ /* compare the priority*/

rtn:=Hp(pPhyDev, fPhyDev, rtn);
if (0=rtn) then {

fPhyDev:=pPhyDev
}; pPhyDev:=pPhyDev→nexts

};
.; /* preempt the device*/

}
};
pLogDev:=pLogDev→nexts;

}
cStatus:= 1; / Resume the System Clock */

}
)

};

In function Sch, if the scheduling signal sigSch arrives (i.e., ∗sigSch := 1),
the Scheduler firstly turns off the scheduling signal (i.e., ∗sigSch := 0) and
pauses the System Clock (i.e., ∗cStatus := 0). Then, the Scheduler traverses
each logical device and allocates the corresponding physical devices to the
waiting processes. For a given logical device, the Scheduler firstly allocates its
idle physical devices to the standing processes. After that, if scheduling algo-
rithm allows preemption (i.e., alPrem = 1) and the logical device is shareable
(i.e., pLogDev→type=1) as well as there still exists some waiting processes,
the Scheduler will preempt some physical devices from the process with lower
priority and allocate them to the waiting higher priority processes. Function
Hp(pPhyDev, fPhyDev, rtn) compares the priorities between the two given
processes. If the priority of the former one is above than or equal to that of
the second one, it returns 1, otherwise 0.

Device Modeling. Let dev, ldSet, sigSch, sigT ime be the variables saving
physical device, the header pointer of the logical device list, scheduling signal
and system time signal respectively. The activities of dev given in Fig. 3 are
formalized with a MSVL function PhyDev as follows.

function PhyDev(pdev t *dev, ldev t *ldSet, int *sigSch, int *sigTime)
{

frame(devID, rtn) and (
.; /* Define and initialize local variables*/

Model Checking Process Scheduling over Multi-core 113

while (true) {
await(dev→status=1) ; /*Wait for the running signal*/
while(dev→cproc→ltime> 0 and dev→cproc→tslice> 0) {

await(*sigTime=1); /*Wait for system clock*/
.; /*Decrease left required time and time slice by 1*/

};
if(dev→cproc→ltime> 0) then { /*Run out of time slice*/

AddToLogDev(ldSet, dev→cproc, dev→cproc→ldid)
}else {

/* Compute the next resource requirement */
rtn:=NextReqDev(dev→cproc, &devID, rtn);
if(rtn> 0) then {

AddToLogDev(ldSet, dev→cproc, devID)
}

}
dev→status:=0 and *sigSch:=1; /*Set scheduling signal*/

}
)

};

In function PhyDev, if the running signal arrives (i.e., dev→status=1), the
device begins to repeatedly decrease the left required time and time slice of
current process by 1 until either of which equals to 0. Subsequently, if the current
time slice runs out (i.e., dev→cproc→ltime> 0), the process is added back to the
corresponding waiting queue by calling function AddToLogDev. Otherwise, the
device computes the next resource requirement by calling function NextReqDev
and adds the process to the waiting process queue of logical device devID.
Finally, the device sets its status to idle (i.e., dev→status:=0) and sends the
scheduling signal to the Scheduler (i.e., *sigSch:=1).

System Clock Modeling. The task of System Clock is relative simple. It
just keeps on increasing the system time T and generating signal sigT ime to
synchronize physical devices in case of cStatus = 1. Let T, cStatus, sigT ime be
the variables saving the system time, the status of System Clock and system
time signal respectively. Function SysClock formalizing the System Clock is as
follows.

function SysClock(int *T , int *cStatus, int *sigTime)
{

while (true) {
if(*status=1) then { /*Run out of time slice*/

*T:=*T+1 and *sigTime:=1
}else {

*sigTime:=0 and skip
}

}
};

114 X. Shu and Z. Duan

3.4 Specification of the Whole System

Let sigSch, sigT ime, cStatus, T be the variables saving the scheduling signal,
system time signal, system clock status and system time respectively. Further, let
ldArray, pdArray, prArray, secArray, rrlArray be the arrays keeping the data
of logical devices, physical devices, processes, resource requirement sections as
well as resource requirement lists respectively. Since all the physical devices, the
Scheduler and the System Clock run concurrently in the computer system, the
whole process scheduling over a multi-core computer system can be described
by the following MSVL function.

function System()
{

frame(sigSch, sigTime, T, cStatus, ldArray, pdArray, prArray,
secArray, rrlArray) and (
.; //Definitions for local variables
Init(ldArray, pdArray, prArray, secArray, rrlArray);
Sch(ldArray, &sigSch, 1, &sigRun, &cStatus) ||

||pdev∈pdArrayPhyDev(pdev, ldArray, &sigSch, &sigRun, &sigTime)
|| SysClock(&T, &cStatus, &sigTime)

}
)

};

where function Init initiates the sets of logical devices, physical devices as well
as processes. The function will be specified according to the computer system to
be verified.

4 Verification Example

In this section, we employ the system model formalized above to verify the
process scheduling over a multi-core computer system.

4.1 System Description

Without loss of generality, let the hardware of the computer consist of a 2-core
CPU, and 3 different I/O devices named by Laser Printer, Network Card and
Hard Disk which only support exclusive access mode. The check list between
logical devices and physical devices is given in Table 1. Moreover, the sched-
uler of the computer selects the algorithm of Earliest Deadline First (EDF), a
preemptive real-time scheduling algorithm, to select a process.

Suppose 3 processes P1, P2 and P3 are read to run and their original resource
requirement lists are as follows:

P1 : ((4, 3), (1, 5), (2, 3), 12)10

P2 : ((1, 4), (3, 3), (4, 2), 10)ω

P3 : ((3, 4), (1, 8), (2, 5), 18)ω

Model Checking Process Scheduling over Multi-core 115

where P1 is a finite periodic task, P2, P3 are both infinite periodic tasks. After
being loaded into the memory, each process will be assigned to the standing
process queue belonging to the logical device it initially applies for.

Thus, function Init of the system model are defined as follows.

function Init(ldev t ldArray[], pdev t pdArray[], process t prArray[],
sec t secArray[], rrl t rrlArray[])

{
frame(i) and (

int i and i<==0 and empty;
while (i< 10) {

. ; /*Initialize each array into a linked list respectively*/
};
ldArray[0].id<== 1 and ldArray[0].dlist<==&pdArray[0] and

ldArray[0].type<== 1 and pdArray[1].nexts<==NULL and
ldArray[0].pque<==NULL and empty;

. ; /*Initialize the other logical devices*/
pdArray[0].id<== 1 and pdArray[0].cproc<==NULL and

pdArray[0].status<== 0 and pdArray[0].ldid<== 1 and empty;
. ; /*Initialize the other physical devices*/
prArray[0].pid<== 1 and prArray[0].ldid<== 4 and

prArray[0].stime<== 0 and prArray[0].ltime<== 0 and
prArray[0].rrl<==&rrlArray[0] and rrlArray[1].nexts<==NULL and
prArray[0].tslice<== 0 and prArray[0].dline<== 0 and empty ;

. ; /*Initialize other processes and their resource requirements*/
)

};

After completing the modeling program, we execute the modeling program
in the MSV interpreter and analyze the result. The screenshot result of modeling
is given in Fig. 3.

Fig. 3. The result of system modeling

4.2 System Verification

In the following, we use the MSV toolkit to verify the safety property of the
process scheduling over the computer, i.e., the task within a period finish suc-
cessfully before the coming of deadline for each process. It is equivalent to verify
that for any process prc, the left required resource time ltime plus the system

116 X. Shu and Z. Duan

Fig. 4. The PPTL formula to be verified

Fig. 5. The result of verification

time T must be less than or equal to the deadline dline of current period at any
time. The property is depicted in MSVL as follows:

safeSch
def=

∧

prc∈prArray

always(T + prc.ltime ≤ prc.dline).

The definition of the property in PPTL formula is depicted in Fig. 4. The
result of the verification is given in Fig. 5, which shows property safeSch is not
satisfied at state 403.

5 Conclusion

In this paper, we introduce the MSVL based model checking method to verify the
safeness of process scheduling over multi-core computer system. A general model
for process scheduling is formalized that it can be easily used to verifying all kinds
of commonly used scheduling algorithms and typical periodic/nonperoid tasks,
and the only work need to do is just adjust necessary parameters. However, the
execution time of the process scheduler is ignored. In the future, we will improve
the system model to be more close to a real computer. Besides, we will extend
the application of the method to more area, such as embedded system, operating
system, cloud computing, etc.

Model Checking Process Scheduling over Multi-core 117

References

1. Wijs, A., van de Pol, J., Bortnik, E.M.: Solving scheduling problems by untimed
model checking. STTT 11(5), 375–392 (2009)

2. Ruys, T.C.: Optimal scheduling using branch and bound with SPIN 4.0. In: Ball,
T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 1–17. Springer, Hei-
delberg (2003)

3. Lime, D., Roux, O.H.: Formal verification of real-time systems with preemptive
scheduling. Real-Time Syst. 41(2), 118–151 (2009)

4. Duan, Z.: An extended interval temporal logic and a framing technique for interval
temporal logic programming. Ph.D. thesis, University of Newcastle Upon Tyne,
May 1996

5. Duan, Z.: Temporal Logic and Temporal Logic Programming. Science Press,
Beijing (2005)

6. Duan, Z., Tian, C., Zhang, L.: A decision procedure for propositional projection
temporal logic with infinite models. Acta Inf. 45(1), 43–78 (2008)

7. Tian, C., Duan, Z.: Expressiveness of propositional projection temporal logic with
star. Theor. Comput. Sci. 412(18), 1729–1744 (2011)

8. Duan, Z., Koutny, M.: A Framed Temporal Logic Programming Language. J. Com-
put. Sci. Technol. 19, 333–344 (2004)

9. Duan, Z., Yang, X., Koutny, M.: Framed temporal logic programming. Sci. Com-
put. Program. 70(1), 31–61 (2008)

10. Duan, Z., Tian, C.: A unified model checking approach with projection temporal
logic. In: Liu, S., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 167–186.
Springer, Heidelberg (2008)

11. Wang, M., Duan, Z., Tian, C.: Simulation and verification of the virtual memory
management system with MSVL. In: Proceedings of the 2014 IEEE 18th Interna-
tional Conference on Computer Supported Cooperative Work in Design (CSCWD),
pp. 360–365, May 2014

12. Cui, J., Duan, Z., Tian, C., Zhang, N., Zhou, C.: Model Checking µ C/OS-III
Multi-task System with TMSVL. In: Butler, M., Conchon, S., Zäıdi, F. (eds.)
Formal Methods and Software Engineering. Lecture Notes in Computer Science,
vol. 9407, pp. 187–200. Springer, Switzerland (2015)

13. Yu, Y., Duan, Z., Tian, C., Yang, M.: Model checking C programs with MSVL. In:
Liu, S. (ed.) SOFL 2012. LNCS, vol. 7787, pp. 87–103. Springer, Heidelberg (2013)

14. Bin, Y., Duan, Z., Tian, C.: Bounded model checking of traffic light control system.
Electr. Notes Theor. Comput. Sci. 309, 63–74 (2014)

15. Ma, Q., Duan, Z., Zhang, N., Wang, X.: Verification of distributed systems with
the axiomatic system of MSVL. Formal Asp. Comput. 27(1), 103–131 (2015)

	Model Checking Process Scheduling over Multi-core Computer System with MSVL
	1 Introduction
	2 Modeling, Simulation and Verification Language
	3 Modeling of Process Scheduling over Multi-core CPU
	3.1 Resource Description
	3.2 Process Description
	3.3 System Modeling
	3.4 Specification of the Whole System

	4 Verification Example
	4.1 System Description
	4.2 System Verification

	5 Conclusion
	References

