
Model Checking µC/OS-III Multi-task System
with TMSVL

Jin Cui1, Zhenhua Duan1(B), Cong Tian1(B), Nan Zhang1,
and Conghao Zhou2

1 ICTT and ISN Laboratory, Xidian University,
Xi’an 710071, People’s Republic of China
{ctian,zhhduan}@mail.xidian.edu.cn

2 College of Information Science and Engineering,
Northeastern University, Shenyang 110819, People’s Republic of China

Abstract. μC/OS-III is the third generation of real-time operating sys-
tems based on multi-task scheduling for embedded systems. The multi-
task system which refers to tasks with the same priority, tasks synchro-
nization and communication, is scheduled by the operating system kernel.
It is critical to ensure the timeliness and correctness of related applica-
tions using μC/OS-III. This paper proposes a model checking approach
to verify a multi-task embedded system running under μC/OS-III. To
do so, the multi-task system and its properties are modelled in TMSVL.
A model checker built in the toolkit MSV is used to verify the schedu-
labilty of the μC/OS-III multi-task system. Experiments show that our
approach is effective and efficient in verifying embedded systems.

Keywords: Model checking · TMSVL · Multi-task systems · Schedula-
bility · μC/OS-III

1 Introduction

μC/OS-III [10] is a preemptive real-time kernel that manages unlimited number
of tasks. It is important to ensure that applications running under μC/OS-III
work correctly and timely. μC/OS-III based applications consist of a number of
tasks, which are scheduled by the operating system (OS) kernel. How to ensure
schedulability of tasks in these applications is critical.

There are two kinds of methods that are often used to determine schedu-
lability of real-time tasks. One is based on mathematical analysis [3–5,11] and
the other one is based on formal methods [2,17,18]. Effective solutions for a
class of problems can be obtained by mathematical analysis. While for flexible
realistic systems, adopting mathematical manual analysis will be quite complex
and error prone. As a complement, formal methods are used. The main work is

This research is supported by the NSFC Grant Nos. 61133001, 61272117, 61322202,
61420106004, and 91418201.

c© Springer International Publishing Switzerland 2015
M. Butler et al. (Eds.): ICFEM 2015, LNCS 9407, pp. 187–200, 2015.
DOI: 10.1007/978-3-319-25423-4 12

188 J. Cui et al.

to formalize the problem in some formal languages, and determine the schedu-
lability by verifying whether the model possesses the corresponding properties
by a supporting tool. The validity of the verification result relies on whether the
formalization is consistent with the original problem.

In [9], an abstract formal model to represent AUTOSAR OS programs for
determining schedulability properties is proposed where the tasks are periodical
and the deadlines and periods of tasks coincide. In [12], schedulability of preemp-
tive event-driven asynchronous real-time systems is analyzed by a conservative
approximation method on composable timed automata models. In [1], timed
automata is used to find optimal schedules for the classical job-shop problem. In
[13], the Uppaal model-checker is applied for schedulability analysis of a system
with single CPU, fixed priorities preemptive scheduler, mixture of periodic tasks
and tasks with dependencies.

Modeling, Simulation and Verification Language (MSVL) is an executable
subset of Projection Temporal Logic (PTL) [7]. TMSVL [8] is a Timed version
of MSVL, which is designed to model, simulate and verify real-time systems.
A toolkit MSV has been developed to support the above three missions. In par-
ticular, a unified model checker can be used to verify whether or not a real-time
system satisfies a specified property. An advantage of TMSVL model checking
over other model checking approaches is that the model of the system and the
property to be verified are both defined in TMSVL. Further, the verification
process can be automatically performed with MSV.

In this paper, we verify schedulability of μC/OS-III based applications. The
multi-task system consists of independent tasks, synchronous tasks, and tasks
with the same priority, which are scheduled by the OS kernel. First, we model the
OS scheduler and different kinds of tasks with TMSVL. Then the schedulability
of the systems is formalized and the schedulability of tasks is verified with MSV.

The paper is organized as follows. The next section introduces the preliminar-
ies of TMSVL. In particular, how timeout, delay, and timeout after time delay
constraints are formalized in TMSVL is introduced. Section 3 gives an overview
of μC/OS-III and Sect. 4 discusses the model checking process of a μC/OS-III
multi-task application. Finally, conclusion and future work are drawn in Sect. 5.

2 TMSVL

MSVL is a temporal logic programming language consists of conjunction,
selection, sequence, parallel, branching, loop as well as projection statements.
TMSVL is a real-time extension of MSVL where quantitative temporal con-
straints are employed to limit the time duration bounded on statements or pro-
grams. Real variables T and Ts are used to describe time and time increment,
respectively.

2.1 Statements in TMSVL

TMSVL consists of arithmetic expressions, boolean expressions, and basic state-
ments. The arithmetic expression e and boolean expression b are defined by the

Model Checking μC/OS-III Multi-task System with TMSVL 189

following grammar:

e ::= n | x | ©x | -©x | e0 op e1(op::= + | − | ∗ |/|mod)
b ::= true | false | e0 = e1 | e0 < e1 | ¬b | b0 ∧ b1

where n is a constant, x is a variable; ©x and -©x denote the value of x at the
next and previous state over an interval, respectively.

1. MSVL statement p
2. Time constraint statment (t1, t2)tp
3. Conjunction statement tp1 ∧ tp2
4. Selection statement tp1 ∨ tp2
5. Sequential statement tp1 ; tp2
6. Parallel statement tp ‖ tq
7. Conditional statement if b then {tp} else {tq}
8. While statement while (b) { tp }
9. Projection statement (tp1, . . . , tpm) prj (tp)

Fig. 1. Basic TMSVL statements

Elementary statements of TMSVL are defined in Fig. 1. First, MSVL state-
ments are included. Suppose t1 and t2 are arithmetic expressions and tp a
TMSVL statement, the time constraint statement (t1, t2)tp means that tp is
executed over the time duration from t1 to t2. Two possible interpretations of for-
mula (t1, t2)tp are shown in Fig. 2. The black dots are states and are represented
by s0, s1, . . . , sk, . . . , sl2 , respectively. We specify sk as the current state here,
thus s0, . . . , sk−1 are the previous states and sk+1, . . . , sl2 the future ones. sl2 is
the terminal state. An interval is a sequence of states, for example s0, s1, . . . , sl2
constitute an interval. Figure 2(a) shows the case t1 > T and Fig. 2(b) the case
t1 = T . The formula tp in (t1, t2)tp must terminate just when T = t2, otherwise
(t1, t2)tp is false. tp1 ∧ tp2 means that tp1 and tp2 are executed concurrently,
and terminate at the same time. Selection statement tp1 ∨ tp2 means tp1 or tp2
is executed. tp1; tp2 means that tp2 is executed after tp1 finishes. Parallel state-
ment tp ‖ tq means that tp and tq are executed in parallel, while they are not
required to terminate at the same time. Conditional and while constructs are
consistent with that in general programming languages such as C and Java. Pro-
jection statement (tp1, . . . , tpm) prj tp means that tp is executed in parallel with
tp1; tp2; . . . ; tpm over an interval obtained by taking the endpoints of the inter-
vals over which tp1, . . . , tpm are executed. An endpoint denotes the first or the
last state of an interval. Taken (tp1, tp2, tp3) prj tp as an example. We assume tp3
terminates before tp. The semantics of (tp1, tp2, tp3) prj tp is intuitively depicted
in Fig. 3.

2.2 Normal Form and Normal Form Graph for TMSVL

Execution of TMSVL programs depends on the transformation of TMSVL pro-
grams into normal forms. A TMSVL program p is in its normal form if p is

190 J. Cui et al.

(a) (b)

Fig. 2. Semantics of time constraint statement

Fig. 3. An example of projection structure

written as:

p ≡
l1∨

i=1

pei ∧ ε ∨
l2∨

j=1

pcj ∧ ©pfj

where l1, l2, i, and j ∈ N0, l1 + l2 ≥ 1, and pfj is a TMSVL program; pei and pcj
are formulas of the form: x1 = e1 ∧ . . . ∧ xm = em. ε means the termination of a
program. That is there does not exist a next state. ©pfj means that pfj will be
executed at the next state. It has been proved that any TMSVL program can
be transformed into normal form.

Given a TMSVL program p, we can construct a graph named Normal Form
Graph (NFG) [6,14,16] that explicitly illustrates the state space of the program.
An NFG is a directed graph, denoted as G =< V,A >, with a node in the
set V of nodes representing a program in TMSVL and an arc in the set A of
arcs representing a state. In fact, NFG determines the models that satisfy the
corresponding TMSVL program.

Suppose that the sets V and A are empty initially, NFG G =< V,A > of a
TMSVL program p can be constructed by determining the set of nodes V and
the set of arcs A inductively as follows:

1. V = V ∪ {p};

2. for any node q ∈ V \{ε, false}, if q ≡
l1∨

i=1

qei ∧ ε ∨
l2∨

j=1

qcj ∧ ©qfj , then V = V ∪
{ε, qfj} and A = A ∪ {(q, qei, ε), (q, qcj , qfj)} for each i and j with 1 ≤ i ≤ l1 and
1 ≤ j ≤ l2.

An element in the set of arcs A is a triple. For instance, (q, qei, ε) denotes a
directed arc from nodes q to ε with the arc labeled with qei.

2.3 Timeout in TMSVL

It is necessary to confine the time for waiting for a particular condition to become
true such that the waiting is terminated when the time expires. Timeout on

Model Checking μC/OS-III Multi-task System with TMSVL 191

waiting is a practical method usually adopted in real-time systems and protocols.
A maximum waiting time is given in advance, so the waiting process stops finally
in one of the following cases: (1) the events waited occur; (2) the event does not
occur but the waiting time expires. The two cases are formalized separatively
in time delay and timeout constraints first. Then the constraint named timeout
after time delay which combines time delay and timeout constraints is introduced
to express the scenario of timeout on waiting or on other process.

Time delay constraint {d1, dm}p (d1 and dm are non-negative reals and
d1 ≤ dm) represents that the statement p starts at the current time and ter-
minates after at least d1 time units and at most dm time units. d1 and dm
provides the upper and lower limits of the time that is taken for p to execute.
The statement p is the TMSVL formalism of the waiting process or other real-
time process. The constraint for time delay is expressed as follows:

{d1, dm}p
def= (T, T + d1)p ∨ . . . ∨ (T, T + di)p ∨ . . . ∨ (T, T + dm)p

where di = di−1 + Ts and 1 < i ≤ m. It is a disjunction of time constraint
statements starting at T and ending at any time within T + d1 and T + dm.

Timeout constraint (t1@tm)p means that p starting at T = t1 terminates
when T = tm naturally or forcibly. If p is not finished when T = tm, it is termi-
nated forcibly. Otherwise, p finishes just when T = t1 naturally. Its definition is
given as follows:

(t1@tm)p def= (t1, tm) p1c ∧ (t2, tm)p2c ∧ . . . ∧ (tm, tm)(pme ∨ pmc)

where t1, . . . , tm are the time values of m consecutive states respectively. pic
represents a state formula obtained by the state reduction on p when T = ti
(1 ≤ i ≤ m). pme represents a terminal state formula indicating that p finishes
naturally when T = tm.

Combining the two constraints above, we derive the timeout after time delay
constraint, denoted as {d1@dm}p. The definition is given as follows:

{d1@dm}p def
= (T, T + d1)p ∨ . . . ∨ (T, T + di)p ∨ . . . ∨ (T, T + dm−1)p ∨ (T@T + dm)p

where di = di−1 +Ts and 1 < i ≤ m. In the timeout after time delay constraint,
when the time delay reaches the upper bound dm but p still does not finish, p
will be terminated forcibly.

3 µC/OS-III Overview

μC/OS-III is different from μC/OS-II mainly in two aspects: (1) task manage-
ment; (2) OS kernel service.

192 J. Cui et al.

3.1 Task Management

μC/OS-III supports multitasking and allows the applications to have any number
of tasks. The maximum number of tasks available only limited by and depends
on the configurations of hardware systems. Tasks of embedded systems typically
take the form of an infinite loop.

In order to implement a specific functionality, tasks are usually not com-
pletely independent in realistic applications. They need to synchronize and com-
municate. μC/OS-III uses semaphores, task semaphores, event flags, messages
and message queues to synchronize and communicate between tasks. Compared
with μCOS-II, task semaphore is a newly introduced synchronous mechanism.
It can be directly signaled by a task to another one without creation.

3.2 OS Kernel Services

The kernel is an important part of OS and its primary duty is tasks scheduling.
μC/OS-III kernel is preemptive and it uses priority-based scheduling. Tasks pri-
ority is specified by users when tasks are created. Different μC/OS-III tasks may
have the same priority. For this reason, round robin scheduling [15] is adopted
in the kernel scheduler. Each task is assigned a duration of time (namely time
quantum) to perform. The task is blocked when the time quantum runs out and
the following task which is ready gets the turn to execute. A task finishes or
being blocked before the quantum running out also yields the processor to other
ready tasks. A list is needed for recording the ready tasks and arranges them in
order of the earliest ready time. When a task runs out of quantum, it is moved
to the end of the list. μC/OS-III scheduler differs from that of μC/OS-II for
it utilizes round robin to priority-based scheduling to deal with tasks with the
same priority. Task scheduling is triggered in the following situations: (1) a task
is added or deleted, or the priority of a task is changed; (2) a task delays itself,
or the delay ends; (3) the event a task requests becomes available.

4 Modeling and Verification of a µC/OS-III Multi-task
Application

In this section, an abstract μC/OS-III multi-task application is given. In order
to verify schedulability, the μC/OS-III kernel is formalized. Then, the TMSVL
formalism of different kinds of tasks including dependent (periodic and non-
periodic) tasks and tasks with synchronizations is given. Meanwhile, the property
to be verified is expressed in TMSVL. Finally, The toolkit MSV is used to verify
the schedulability of the tasks in the application.

4.1 A Multi-task Application

The application consists of five user tasks: task0, task1, task2, task3, and task4

with the priorities being 5,6,7,7,8. Larger number represents lower priority.

Model Checking μC/OS-III Multi-task System with TMSVL 193

Thus, task0 has the highest priority, followed by task1, then task2 and task3

which have the same priority, and finally task4. The five tasks are responsible
for different functionalities. The relationship of tasks is given in Fig. 4. task0

and task2 are synchronized through task semaphore se0. task0 sends out se0 to
activate task2. If task2 cannot receive se0, it waits infinitely. Similarly, task1 and
task3 are synchronized through se1. But task3 waits no more than to time units
for se1. task4 is an independent task.

Fig. 4. The relationship between task0 and task2, task1 and task3

In Fig. 5, task0 executes Computation1 first. Then it releases the semaphore
se0 after Computation0. Finally, task0 delays for t0 time units. The structure of
task1 is the same as task0. task2 and task3 share the same priority. They also
have similar structures, so we just give the pseudo-code of task2. It requests
se0 first. pend(se0, to) means that the waiting time for se0 is at most to time
unites, specially, to < 0 means there is no time limit on waiting se0. The first
argument se0 is an integer variable representing the semaphore being requested
and the second argument is the time limit for waiting for the signal. For task2,
since to < 0, it executes Computation2 only after receiving the signal se0. When
the execution of Computation2 is finished, it goes on the requesting for se0 for
the next execution. task4 performs computation and delays for t4 time units
when the computation finishes.

task0() task2() task4()

1. { while(1) 1. { while(1) 1. { while(1)

2. { Computation0; 2. { pend(se0, to); 2. { Computation4;

3. post(se0); 3. Computation2; 3. delay(t4);

4. delay(t0); 4. } 4. }
5. } 5. } 5. }
6. }

Fig. 5. Tasks pseudo-code

4.2 TMSVL Model of OS Kernel

The OS kernel model consists of the variables which represent the OS objects
(e.g. the ready tasks, the highest priority ready task) and the TMSVL model of
the OS scheduler.

194 J. Cui et al.

Kernel Variables. We use an array rd to represent whether each task in it
is ready. The index of rd is the task number and smaller index corresponds to
higher priority. For index i, if task i is ready, rd[i] = 1; otherwise, rd[i] = 0.
rd is initialized to zero. The variable runTaskID stores the task number of the
currently running task. The float variable Quan stores the time quantum for
scheduling the same priority tasks in round-robin manner.

A List variable l is used to store the ready tasks for each priority when round
robin scheduling is enabled. The definition of List is as follows:

struct{ int taskID; List *nextEL; } List l;

The first member in List stores the identifier of a task, and the second member
is a List pointer pointing to the next List element. When a task is ready, it is
added to the end of l.

Kernel Services. In the TMSVL model of the kernel service, we use Q and
M Robin to represent the OS scheduler and the round robin scheduling modules.
Q is given in Fig. 6 and it finds the ready task with the highest priority by
conjunctions of the if statements and stores the task’s number in runTaskID.
The number of if statements is the number of priorities used by tasks. For a
priority which corresponds to more than one task, an if statement is enough
and round robin scheduling M Robin is invoked in that case. In Fig. 6, task2

and task3 have the same priority.
M Robin is given in Fig. 7. We use several functions to express the oper-

ation on the List l. In Line 1, size(l) returns the number of elements in l.

Q
def
=
1. while(true)
2. { if(rd[0]=1) then{runTaskID=0}
3. and
4. if(rd[0]=0 and rd[1]=1)
5. then{runTaskID=1}
6. and
7. if(rd[0]=0 and rd[1]=0 and (rd[2]=1 or rd[3]=1))
8. then{M Robin }
9. and
10. if(rd[0]=0 and rd[1]=0 and rd[2]=0 and rd[3]=0 and rd[4]=1)
11. then{runTaskID=4 }
12. and
13. ...
14. if(rd[0]=0 and rd[1]=0 and ...)
15. then{runTaskID=IDEL }
16. and skip
17. }

Fig. 6. TMSVL model of the scheduler

Model Checking μC/OS-III Multi-task System with TMSVL 195

M Robin
def
=
1. if(size(l)>0)
2. then{ runTaskID=head(l) and
3. if(ac[head(l)]+Ts<C[head(l)] and (ac[head(l)]+Ts)%Quan!=0)
4. then{runTaskID:=head(l)} }
5. and
6. if(ac[head(l)]+Ts=C[head(l)])
7. then{next popHead(l) and
8. if(size(l)>1) then{runTaskID:=head(l)} }
9. and
10. if(ac[head(l])]+Ts<C[head(l)] and (ac[head(l)]+Ts)%Quan=0)
11. then{ next MoveHead2Tail(l) and
12. runTaskID:=head(l) }
13. }

Fig. 7. TMSVL model of the round robin scheduling

If size(l)> 0, l is not empty, the statements in Lines 2–13 are executed. The
head of l is running first (Line 2). The function head() is used to obtain the
taskID of the first element in l. It takes only one List type argument and
returns an integer representing the first element’s taskID of the List l. Lines
3–4 show the case where neither does the first element of l run out of the quan-
tum nor does it finish at the next state and the head element goes on running
at the next state. Lines 6–8 show the second case where the task corresponding
to head(l) finishes. In this case, the task is removed from l. Here we use the
function popHead(l) to represent this operation. Next, we need to test whether
l is empty after popHead(l) and if l is not empty, the task corresponding to
the head of l gets the processor by setting runTaskID to the value of head(l)
at the next state. Lines 10–12 show the case where the task is not finished but
runs out of the time quantum at the next state. In this case, the task is moved
from the head to the tail of l and the task corresponding to the new head gets
the chance to run at the next state. The function MoveHeadToTail() moves the
head of l to the tail and makes the head of l change (Line 10).

4.3 TMSVL Model of a Multi-task System

The multi-task system consists of five parallel tasks. Let M taski represent the
user taski (i=0,1,2,3,4). We denote the model of the multi-task system as M.
Thus M ≡ ||4i=0M taski.

We use float array elements C[i], ac[i] and acD[i] to represent the required
computation time, the accumulated running time and the accumulated delay
time of taski in the current period, respectively. Boolean array elements wait[i]
and ex[i] are used to indicate whether taski is at the waiting and the executing
state, respectively.

Figure 8 shows the TMSVL model of task0, task1 and task4. A new com-
putation circle starts in Line 2. Then the task waits its turn to run (Line 3).

196 J. Cui et al.

M taski
def
= //i=0,1,4
1. while(true)
2. { ac[i]=0 and
3. await(runTaskID=i);
4. while(ac[i]<C[i])
5. { if(runTaskID=i)
6. then{ac[i]:=ac[i]+Ts and ex[i]=1 and wait[i]=0 and
7. if(ac[i]+Ts=C[i] and i! = 4) then{sei:=sei+1} }
8. else {ex[i]=0 and skip} };
9. (T,T+dly[i])keep(next acD[i]=acD[i]+Ts and
10. rd[i]=0 and ex[i]=0 and wait[i]=1);
11. acD[i]=0 and rd[i]=1 and empty
12. }

Fig. 8. TMSVL model of tasks 0, 1, 4

M taski
def
= //i=2,3
1. while(true)
2. { if(sei−2 ≤ 0)
3. then{rd[i]=0 and ex[i]=0 and wait[i]=1 and
4. {0@to}await(sei−2 > 0);
5. rd[i]=1 and wait[i]=0 and empty };
6. ac[i]=0 and
7. await(runTaskID=i);
8. while(ac[i]<C[i])
9. { if(runTaskID=i)
10. then{ac[i]:=ac[i]+Ts and ex[i]=1 and wait[i]=0 and
11. if(ac[i]+Ts=C[i] and sei−2 > 0)
12. then{sei−2:=sei−2-1 and
13. if(sei−2 − 1 > 0)
14. then {rd[i]:=1 } } }
15. else {ex[i]=0 and skip} }
16. }

Fig. 9. TMSVL model of tasks signaled by other tasks

Lines 4–8 shows the task starts running in a new circle, during this period, it
can be preempted by tasks with higher priorities. Lines 5–7 corresponds to the
case where the task is running and Line 8 stands for the situation where the
task is preempted. task0 and task1 signal to other tasks and delay themselves
upon finishing the computations. task4 just delays after finishing its computa-
tion. In Line 7, sei is increased by 1 at the next state when taski finishes at the
next state, the value of i is 0 or 1. When taski finishes a computation, namely,
ac[i]=C[i], it delays for dly[i] time units. This is represented by the time
constraint statement in Lines 9–10. During this period, rd[i] is 0. When the
delay ends, taski becomes ready by setting rd[i] to 1.

Model Checking μC/OS-III Multi-task System with TMSVL 197

The models for task2 and task3 are given in Fig. 9. Before a new computation
starts, first, the task needs to test whether the requested task semaphore has
been sent out (Line 2). sei−2 ≤ 0 (i=2,3) means that the task semaphore has not
been sent out and the task has to wait and be at the waiting state (Lines 3–4).
{0@to}await(sei−2 > 0) means the waiting on sei−2 > 0 is no more than to
time units. When the semaphore is received or not received in to time units, the
task stops waiting and turns to the ready state by setting rd[i] to 1 and wait[i]
to 0 (Line 5). Then the task waits its turn to run (Line 6–7). Lines 8–15 shows
the task starts running in a new circle, during this period, it can be preempted
by tasks with higher priorities. Lines 10–14 corresponds to the case where the
task is running and Line 15 stands for the situation where the task is preempted.
When ac[i] = C[i], namely, taski finishes the computation of the current period,
sei−2 is decreased. When the computation of the current circle completes, the
program goes to Line 2 to repeat the process above.

4.4 Verification of Schedulability

In the previous section, we model the OS scheduler and different kinds of μC/OS-
III tasks (independent tasks, synchronous tasks) with TMSVL. Based on the
TMSVL model, the property to be verified is formalized.

Schedulability is an important property for real-time multi-task systems. It
means that all the tasks scheduled can finish within the given deadline. In other
words, each task can finish in a given time duration from the moment it is ready.
Schedulability of N tasks is expressed in TMSVL denoted as PSch below.

PSch
def= ∧N

i=0(rd[i] = 1 ∧ ac[i] = 0 → ({Ts,D[i]}true; ac[i] = C[i]))+

Here, D[i] is the deadline for taski. C[i] and ac[i] are the computation time and
accumulated running time which are given in the previous section. In PSch, ‘+’
is derived from the sequential operator ‘ ; ’. Suppose p is a TMSVL statement,
p+ means that the number of p in p; p; . . . ; p can be any positive integer.

With the TMSVL model of a μC/OS-III multi-task application and the prop-
erty described in TMSVL. Whether the property is valid on the application can
be automatically checked by the toolkit MSV. In this section, we verify schedu-
lability for the multi-task application given in the previous subsection.

The deadlines for the 5 tasks are stored in the array D where D[5] ={0.03,
0.04, 0.13, 0.23, 0.25}. The computation time for each task is stored in the array
C where C[5] ={0.03, 0.04, 0.06, 0.09, 0.12}. The delay time of the five tasks
are stored in the array dly where dly[5] = {0.3, 0.2, 0, 0, 0.3}. The waiting time
to on request for se1 is set to 0.03. we assume the tasks are started at the same
time T = 0.

The verification result for the application is shown in Fig. 10. There are 770
nodes and 770 arcs on the counterexample. Each node represents a program
while each arc represents a state which shows the executing of the application
at different time. The root node is a double circle, it represents the TMSVL
model of the application. Other node represents the future part produced by

198 J. Cui et al.

Fig. 10. Verification result

executing the program that the precursor node represents, and the current part
is represented by an arc. For example, arc 0 and node 1 are the executing results
of node 0. The arcs are state formulas while the nodes are TMSVL programs
which are required to be further executed.

In Fig. 10, we can see that arc 0 represents the state that T = 0, task0, task1

and task4 are ready since the first, second and fifth elements in rd is 1, and task0

starts executing since runTaskID = 0. After 0.03 s, task0 finishes and activates
task2, that is, task2 is ready at T = 0.03 for the first time. When T = 0.17, task2

finishes, for the accumulated time ac[2] is equal to C[2]. We can see that task2

finishes after 0.14 s from the time it is activated which is greater than the give
deadline. So the schedulability for task2 is violated which leads to the violation
of PSch.

Fig. 11. Verification result

The property PSch is too strict for it requires all the tasks should finish in
the given deadlines. We can relax the schedulability requirements by ignoring the
deadline for task2 and task3. Thus the property can be represented as follows:

PSch0,1,4
def= ∧i=0,1,4(rd[i] = 1 ∧ ac[i] = 0 → ({Ts,D[i]}true; ac[i] = C[i]))+

PSch0,1,4 just requires that task0, task1 and task4 always finish in the given
deadline. The verification result is shown in Fig. 11, there is no counterexample,
so we can conclude that task0, task1 and task4 are always finished in their dead-
line. When the schedulability of a set of tasks is violated, we need to determine
which tasks violated the property. In this case, verifying schedulability of a single
task at one time instead of the whole is efficient.

Model Checking μC/OS-III Multi-task System with TMSVL 199

5 Conclusion

We present a unified model checking approach to verify schedulability of multi-
task application running under μC/OS-III. The OS scheduler which combines
priority based scheduling and round-robin scheduling is modeled in TMSVL.
Tasks synchronization with timeout and delay mechanism are also formalized in
TMSVL. With the toolkit MSV, a multi-task system running under μC/OS-III
is formalized and verified. The mechanism that time intervals are adjustable for
modeling improves the efficiency of verification. In the near future, we will put
TMSVL into practise and verify more realistic industrial applications.

References

1. Abdeddaım, Y., Asarin, E., Maler, O.: Scheduling with timed automata. Theoret.
Comput. Sci. 354(4), 272–300 (2006)

2. Mokadem, H.B., Berard, B., Gourcuff, V., De Smet, O., Roussel, J.-M.: Verification
of a timed multitask system with uppaal. IEEE Trans. Autom. Sci. Eng. 7(4), 921–
932 (2010)

3. Bini, E., Buttazzo, G.C.: Schedulability analysis of periodic fixed priority systems.
IEEE Trans. Comput. 53(11), 1462–1473 (2004)

4. Bini, E., Buttazzo, G.C., Buttazzo, G.M.: Rate monotonic analysis: the hyperbolic
bound. IEEE Trans. Comput. 52(7), 933–942 (2003)

5. Bucci, G., Fedeli, A., Sassoli, L., Vicario, E.: Timed state space analysis of real-time
preemptive systems. IEEE Trans. Softw. Eng. 30(2), 97–111 (2004)

6. Duan, Z., Tian, C.: A unified model checking approach with projection temporal
logic. In: Liu, S., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 167–186.
Springer, Heidelberg (2008)

7. Duan, Z., Yang, X., Koutny, M.: Framed temporal logic programming. Sci. Com-
put. Program. 70(1), 31–61 (2008)

8. Han, M., Duan, Z., Wang, X.: Time constraints with temporal logic program-
ming. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 266–282.
Springer, Heidelberg (2012)

9. Huang, Y., Ferreira, J.F., He, G., Qin, S., He, J.: Deadline analysis of AUTOSAR
OS periodic tasks in the presence of interrupts. In: Groves, L., Sun, J. (eds.) ICFEM
2013. LNCS, vol. 8144, pp. 165–181. Springer, Heidelberg (2013)

10. Labrosse, J.J.: uC/OS-III: The Real-Time Kernel. Micrium Press, Weston (2009)
11. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-

real-time environment. J. ACM (JACM) 20(1), 46–61 (1973)
12. Madl, G., Dutt, N., Abdelwahed, S.: A conservative approximation method for the

verification of preemptive scheduling using timed automata. In: 2009 15th IEEE
Real-Time and Embedded Technology and Applications Symposium, RTAS 2009,
pp. 255–264 (2009)

13. Miku00ionis, M., Larsen, K.G., Rasmussen, J.I., Nielsen, B., Skou, A., Palm, S.U.,
Pedersen, J.S., Hougaard, P.: Schedulability analysis using uppaal: Herschel-planck
case study. In: Proceedings of the 4th International Conference on Leveraging
Applications of Formal Methods, Verification, and Validation - Volume Part II
(2010)

200 J. Cui et al.

14. Pang, T., Duan, Z., Tian, C.: Symbolic model checking for propositional projection
temporal logic. In: 2012 Sixth International Symposium on Theoretical Aspects of
Software Engineering (TASE), pp. 9–16. IEEE (2012)

15. Rasmus, R.V., Trick, M.A.: Round robin scheduling-a survey. Eur. J. Oper. Res.
188(3), 617–636 (2008)

16. Tian, C., Duan, Z.: Propositional Projection Temporal Logic, Büchi Automata and
ω-Regular Expressions. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC
2008. LNCS, vol. 4978, pp. 47–58. Springer, Heidelberg (2008)

17. Wasziwoski, L., Hanzalek, Z.: Model checking of multitasking real-time applica-
tions based on the timed automata model using one clock. Behavioral Modeling
for Embedded Systems and Technologies: Applications for Design and Implemen-
tation: Applications for Design and Implementation, p. 194 (2009)

18. Waszniowski, L., Krákora, J., Hanzálek, Z.: Case study on distributed and fault
tolerant system modeling based on timed automata. J. Syst. Softw. 82(10), 1678–
1694 (2009)

	Model Checking C/OS-III Multi-task System with TMSVL
	1 Introduction
	2 TMSVL
	2.1 Statements in TMSVL
	2.2 Normal Form and Normal Form Graph for TMSVL
	2.3 Timeout in TMSVL

	3 C/OS-III Overview
	3.1 Task Management
	3.2 OS Kernel Services

	4 Modeling and Verification of a C/OS-III Multi-task Application
	4.1 A Multi-task Application
	4.2 TMSVL Model of OS Kernel
	4.3 TMSVL Model of a Multi-task System
	4.4 Verification of Schedulability

	5 Conclusion
	References

