
A Complete Axiomatization of Propositional Projection Temporal Logic

Zhenhua Duan
Institute of Computing Theory and Technology

Xidian University, Xi’an 710071, P.R.China
zhenhua duan@126.com

Nan Zhang
Institute of Computing Theory and Technology

Xidian University, Xi’an 710071, P.R.China
jiang-nan2006@163.com

Abstract

This paper investigates a complete axiomatic system for
Propositional Projection Temporal Logic (PPTL). To this
end, the syntax, semantics, and logic laws of PPTL are
briefly introduced. Further, the normal form of PPTL for-
mulas is presented. Moreover, an axiomatic system of PPTL
is formalized. A set of axioms and inference rules are given
in details. To assist the proof within the system, some theo-
rems are proved by means of the axioms and rules. In ad-
dition, based on the axioms, rules and theorems, the sound-
ness and completeness of the deductive system are proved.
Finally, an example is given to illustrate how the axiom sys-
tem works.

1. Introduction

Temporal logics, Linear Temporal Logic [16], Computa-
tion Tree Logic [6], Interval Temporal Logic [18, 19], Tem-
poral Logic of Actions [13], and many others [12, 2, 24],
have been proposed for specification and verification of
concurrent systems for three decades. Basically, two ver-
ification approaches, model checking [5, 23] and theorem
proving [3], are popular in practice. Model checking is an
automatic verification approach based on model theory. The
advantage of model checking is that the verification can be
done automatically. However, it suffers from the state ex-
plosion problem. Also, it is less suitable for data intensive
applications since the treatment of the data usually produces
infinite state spaces [17]. Two successful model checking
tools are SPIN [9] and SMV [17].

With theorem proving approach, to verify whether or not
a system S satisfies a property P is to prove whether or not
� S → P is a theorem within the proof system. The ad-
vantage is that theorem proving avoids the state explosion
problem and can verify both finite and infinite systems, and
can be done semi-automatically. It is therefore also suitable
for data intensive applications. However, within the verifi-
cation process, lots of assertions need to be inserted in the

context of the program modeling the system, and the use of
theorem prover requires considerable expertise to guide and
assist the verification process. One of the famous theorem
provers is PVS [20].

There are a number of proof systems and supporting
tools for LTL, CTL, and TLA [10, 22, 1]. However, the
expressive power of these logics is weaker than ITL which
is a useful and powerful formalism for specification and
verification for reactive systems since it uses a composi-
tional operator chop (;) and an iterative operator chop-star
(∗). With ITL community, several researchers have inves-
tigated axiom systems with different extensions. Rosner
and Pnueli [25] presented an axiom system for a proposi-
tional choppy logic with chop, next and until operators, and
based the completeness proof on a tableau-based decision
procedure. Paech [21] formalized a complete Gentzen-style
proof system over finite intervals with temporal operators
chop, chop-star and until. Bowman and Thompson pre-
sented a tableau-based decision procedure for PITL over fi-
nite intervals with projection. Subsequently, they presented
a completeness proof for an axiomatization of this logic [4].
Moszkowski [18] presented axiom systems over finite inter-
vals for PITL and first order ITL. The propositional part is
claimed to be complete but only an outline of a proof was
given. Later work extended this for projection with infinite
time [19].

One of the extensions of ITL is the Projection Temporal
Logic (PTL) which contains temporal operators: next and
a new projection (prj)[7, 8]. In this paper, with PPTL, we
also extend it to contain projection-star (�). These new op-
erators can subsume chop , chop-star and the original pro-
jection (proj) operators. For instance (see Section 2 for
details),

P ; Q ≡ (P, Q) prj ε, P ∗ ≡ (P �) prj ε , and

P proj Q ≡ ((P⊕, r ∧ ε) prj (Q; r ∧ ε)) ∧ halt(r)

As a result, the extended logic PPTL is more expressive
and represents the full regular language without loss of de-
cidability [28]. A decision procedure for checking the sat-
isfiability of PPTL with both finite and infinite models is

2nd IFIP/IEEE International Symposium on Theoretical Aspects of Software Engineering

978-0-7695-3249-3/08 $25.00 © 2008 IEEE

DOI 10.1109/TASE.2008.22

271

given in [7, 15, 14], and based on the decision procedure, a
model checking approach based on SPIN for PPTL formu-
las is also proposed in [27]. This enables us to verify full
regular expression properties specified by PPTL formulas
of concurrent systems modeled by PROMELA in SPIN as
finite state programs. However, as mentioned earlier, such
verification suffers from state explosion problem and is not
suitable for data intensive systems. Therefore, we are moti-
vated to formalize an axiom system for PPTL. To this end,
a set of axioms and inference rules are presented; further,
for convenience of proofs, a number of theorems are also
proved; moreover, based on these axioms, rules, and theo-
rems, the normal form of PPTL formulas is proved by in-
duction on the structure of formulas; in addition, the sound-
ness and completeness of the axiom system are proved in
details.

This paper is organized as follows. In the following sec-
tion, the syntax, semantics and some logic laws of PPTL
are presented. The definition of the normal form of PPTL
formulas is given in Section 3. In Section 4, the axiom sys-
tem is formalized, in particular, axioms, inference rules and
theorems are given. Then the soundness and completeness
of the axiom system are proved in Section 5. An example is
given in Section 6 to illustrate how the axiom system works.
Finally, conclusions are drawn in Section 7.

2. Propositional Projection Temporal Logic

Our underlying logic is a Propositional Temporal Logic
with projection [7, 8]. It is an extension of Propositional
Interval Temporal Logic (PITL) [18, 19].
[Syntax] Let P rop be a countable set of atomic propo-
sitions, and N0 non-negative integers. The formula P of
PPTL is given by the following grammar:

P ::= p | © P | ¬P | P1 ∨ P2 | (P1, . . . , Pm) prj P
| (P1, . . . , (Pi, . . . , Pl)

⊕, . . . , Pm) prj P

where p ∈ P rop, P1, . . . , Pi, . . . , Pl, . . . , Pm(1 ≤ i ≤ l ≤
m, i, l, m ∈ N0) and P are all well-formed PPTL formulas,
and ©, prj and ⊕ (projection-plus) are primitive temporal
operators. A formula is called a state formula if it contains
no temporal operators otherwise it is a temporal formula.
For ease of notations, sometimes we use the abbreviation
X(k,..,l) to denote the formula sequence Xk, . . . , Xl (k ≤
l, k, l ∈ N0).

The abbreviations true, false, ∧, → and ↔ are defined

as usual. In particular, true
df= P ∨ ¬P and false

df= P ∧
¬P for any formula P . The derived formulas are given as
follows, where n ∈ N0.

A1 more
df
= ©true A2 ε

df
= ¬© true

A3 ©0P
df
= P A4 ©nP

df
= ©(©n−1P)(n > 0)

A5
�
P

df
= ε ∨©P A6 �P

df
= true;P

A7 �P df
= ¬�¬P A8 P ;Q

df
= (P,Q) prj ε

s1s0 s2 s3 s4

s0 s2 s3

ε ε ε
s0 s1 s2 s3 s4 s5 sω

s0 s1 s3 s4

the projected interval

· · ·
(a)

the projected interval

(b)

Figure 1. Projected intervals.

A9 len(n)
df
= ©nε A10 P+ df

= (P⊕) prj ε

A11 skip
df
= len(1) A12 P ∗ df

= (P�) prj ε
A13 (P1, . . . , (Pi, . . . , Pl)

� , . . . , Pm) prj Q
df
= (P1, . . . , ε, . . . , Pm) prj Q
∨ (P1, . . . , (Pi, . . . , Pl)

⊕, . . . , Pm) prj Q

A14 (P1, . . . , (Pi, . . . , Pl)
(n), . . . , Pm) prj Q (n > 0)

df
= (P1, . . . , Pi, . . . , Pl, . . . , Pi, . . . , Pl� �� �

n times

, . . . , Pm) prj Q

[Semantics] State, interval, interpretation, validity, satisfia-
bility, and precedence rules of PPTL are introduced in turn.
1. state

Following the definition of Kripke’s structure [11], we
define a state s over P rop to be a mapping from P rop to
B = {true, false} : s : P rop → B. We use s[p] to denote
the valuation of p at state s.
2. interval

An interval σ is a non-empty sequence of states, which
can be finite or infinite. The length, |σ|, of σ is ω if σ
is infinite, and the number of states minus 1 if σ is finite.
We consider the set N0 of non-negative integers and ω,
Nω = N0 ∪ {ω} and extend the comparison operators, =,
<, ≤, to Nω by considering ω = ω, and for all i ∈ N0,
i < ω. Furthermore, we define as ≤ −{(ω, ω)}. To
simplify definitions, we will denote σ as < s0, . . . , s|σ| >,
where s|σ| is undefined if σ is infinite. With such a nota-
tion, σ(i...j) (0 ≤ i j ≤ |σ|) denotes the sub-interval
< si, . . . , sj > and σi (0 ≤ i ≤ |σ|) denotes the prefix in-
terval < s0, . . . , si >. The concatenation of a finite σ with
another interval (or empty string) σ

′
is denoted by σ · σ

′

(not sharing any states). Let σ =< s0, s1, . . . , s|σ| > be
an interval and r1, . . . , rh be integers (h ≥ 1) such that
0 ≤ r1 ≤ r2 ≤ . . . ≤ rh |σ|. The projection of σ onto
r1, . . . , rh is the interval (called projected interval)

σ ↓ (r1, . . . , rh) =< st1 , st2 , . . . , stl >

where t1, . . . , tl are obtained from r1, . . . , rh by deleting all
duplicates. That is, t1, . . . , tl is the longest strictly increas-
ing subsequence of r1, . . . , rh. For instance,

< s0, s1, s2, s3, s4 >↓ (0, 0, 2, 2, 2, 3) =< s0, s2, s3 >

this projected interval is shown in Fig. 1(a). We also need
to generalize the notation of σ ↓ (r1, . . . , rh) to allow ri

to be ω. For an interval σ =< s0, s1, . . . , s|σ| > and 0 ≤
r1 ≤ r2 ≤ . . . ≤ rh ≤ |σ| (ri ∈ Nω), we define

σ ↓ (r1, . . . , rh, ω) = σ ↓ (r1, . . . , rh)

272

For instance,

< s0, s1, . . . , sω >↓ (0, 1, 3, 4, ω, ω) =< s0, s1, s3, s4 >

this projected interval is shown in Fig. 1(b).
3. interpretation

An interpretation is a triple I = (σ, k, j), where σ is
an interval, k integer, and j an integer or ω such that 0 ≤
k j ≤ |σ|. We use the notation (σ, k, j) |= P to indicate
that some formula P is interpreted and satisfied over the
subinterval < sk, . . . , sj > of σ with the current state being
sk. The satisfaction relation (|=) is inductively defined in
Table 1.

Table 1. Semantics

I |= p iff sk[p] = true, for any atomic proposition p.

I |= ¬P iff I �|= P.

I |= ©P iff k < j and (σ, k + 1, j) |= P.

I |= P ∨Q iff I |= P or I |= Q.

I |= (P1, . . . , Pm) prj Q iff there exist integers k = r0 ≤ · · ·
≤ rm−1 � rm ≤ j; for all 1 ≤ l ≤ m, (σ, rl−1, rl) |= Pl;
σ

′ |= Q for one of the following σ
′
:

• rm < j and σ′ = σ ↓ (r0, . . . , rm) · σ(rm+1..j), or
• rm = j and σ′ = σ ↓ (r0, . . . , rh) for some 0 ≤ h ≤ m.

I |= (P1, . . . , (Pi, . . . , Pl)
⊕, . . . , Pm) prj Q iff one of follow-

ing cases holds:
• 1 ≤ i ≤ l ≤ m and there exists an integer n ≥ 1 and
I |= (P1, . . . , (Pi, . . . , Pl)

(n), . . . , Pm) prj Q, or
• 1 ≤ i ≤ l = m, j = ω and there exist infinitely many
integers k = r0 ≤ r1 ≤ · · · ≤ rk � ω and lim

k→∞
rk = ω

such that for all 1 ≤ x ≤ i− 1, (σ, rx−1, rx) |= Px, and
(σ, ri+t(l−i+1)+n−1, ri+t(l−i+1)+n) |= Pi+n, for all
t ≥ 0 and 0 ≤ n ≤ l− i, and σ ↓ (r0, r1, . . . , rh, ω) |= Q
for some h ∈ Nω .

For instance, formula (P1, P2) prj Q has three possi-
ble interpretations as shown in Fig. 2(a)(b)(c). Here, Q
and P1 start to be interpreted at a common state s0. Then
P1 and P2 are interpreted sequentially. Q is interpreted
in a parallel manner with P1; P2 over the interval, which
consists of endpoints of the subintervals over which P1, P2

are interpreted. The semantics of projection-plus (⊕) is
tricker. When l < m, the last formula Pl of the repeti-
tion part (Pi, . . . , Pl) is not the last formula Pm of the for-
mula sequence; (Pi, . . . , Pl) can be interpreted repeatedly
for only finitely many times; in other words, the formu-
las Pl+1, ..., Pm must be interpreted from some time point.
The semantics of this case can be illustrated by the seman-
tics of the projection. When l = m, the last formula of the
repetition part is the last formula of the formula sequence.
For instance, with formula (P1, (P2, P3)⊕) prj Q, (P2, P3)
can be interpreted for finitely or infinitely many times. If
(P2, P3) is interpreted for infinitely many times, Q may ter-
minate at some finite time point or not terminate; in other

words, the projected interval over which Q is interpreted
can be finite or infinite. The infinite case is shown in Fig.
2(d).

P1 P2

Q QQ

P1P1 P2 P2

sω

P1 P2 P2P3 P3 · · ·
· · ·Q

(a) (b) (c)

(d)

Figure 2. Possible semantics of projection
and projection-plus.

4. validity and satisfiability
A formula P is satisfied by an interval σ, denoted by σ |=

P , iff (σ, 0, |σ|) |= P . A formula P is called satisfiable iff
σ |= P for some σ. A formula P is called valid iff σ |= P
for all σ, denoted by |= P . We denote |= �(P ↔ Q) by
P ≡ Q and |= �(P → Q) by P ⊃ Q.

Definition 1
1. A formula P is called terminable iff P ∧ �ε �≡ false.
2. A formula P is called non-terminable iff P ≡ P ∧ �¬ε.

5. precedence rules
To avoid an excessive number of parentheses, the follow-

ing precedence rules are used (1=highest and 5=lowest).

1. ¬ 2. ©,
⊙

, �, �, +, ∗ 3. ∧, ∨
4. →, ↔ 5. prj, ; , ⊕, �

[Logic Laws] Let P, Pi, P
′
i , Q, Ri be PPTL formulas and

w a state formula and P0
df= ε. The proofs of following laws

can be found in [7, 8].

L1 �(P ∧ Q) ≡ �P ∧ �Q L2 �(P ∨ Q) ≡ �P ∨ �Q
L3 ©(P ∧ Q) ≡ ©P ∧©Q L4

�
(P ∧ Q) ≡ �

P ∧�Q
L5 ©(P ∨ Q) ≡ ©P ∨©Q L6

�
(P ∨ Q) ≡ �

P ∨�Q
L7 �P ≡ P ∧��P L8 �P ≡ P ∨ ©�P
L9 ¬ε ∧ ¬ © P ≡ ¬ε ∧ ©¬P L10 ¬�P ≡ ©¬P
L11 ¬ © P ≡ �¬P L12 ¬�P ≡ �¬P
L13 ¬�P ≡ �¬P L14 ©P ; Q ≡ ©(P ; Q)
L15 ε prj Q ≡ Q L16 Q prj ε ≡ Q

L17 (P1, . . . , Pm) prj ε ≡ P1; . . . ; Pm

L18 (P1, . . . , ε ∧ w, Pi, . . . , Pm) prj Q ≡
(P1, . . . , w ∧ Pi, . . . , Pm) prj Q

L19 (P1, . . . , Pm) prj © Q ≡
(P1 ∧ ¬ε; ((P2, . . . , Pm) prj Q))∨
(P1 ∧ ε; ((P2, . . . , Pm) prj © Q))

L20 (©P1, . . . , Pm) prj © Q ≡ ©(P1; ((P2, . . . , Pm) prj Q))
L21 ©P prj © Q ≡ ©(P ; Q)

L22 (P1, . . . , (Pi ∨ P
′
i), . . . , Pm) prj Q ≡

(P1, . . . , Pi, . . . , Pm) prj Q ∨ (P1, . . . , P
′
i , . . . , Pm) prj Q

L23 (P1, . . . , Pm) prj (P ∨ Q) ≡
(P1, . . . , Pm) prj P ∨ (P1, . . . , Pm) prj Q

L24 (w ∧ P1, . . . , Pm) prj Q ≡ w ∧ (P1, . . . , Pm) prj Q
L25 (P1, . . . , Pm) prj (w ∧ Q) ≡ w ∧ (P1, . . . , Pm) prj Q

273

L26 (P1, . . . , Pi ∧ �ε, . . . , Pm) prj Q ≡
(P1, . . . , Pi, ε, . . . , Pm) prj Q

L27 (P1, . . . , Pm) prj ε ≡
(P1, (P2, . . . , Pm) prj ε) prj ε ≡
((P1, . . . , Pm−1) prj ε, Pm) prj ε

L28 P ∧ ¬�ε prj Q ≡ P ∧ ¬�ε prj Q ∧ ε
L29 (P1, . . . , (Pi, . . . , Pj)

⊕, . . . , Pm) prj Q ≡
(P1, . . . , Pi, . . . , Pj , . . . , Pm) prj Q∨
(P1, . . . , Pi, . . . , Pj , (Pi, . . . , Pj)⊕, . . . , Pm) prj Q

L30 ((P1, . . . , Pi)
⊕, . . . , Pm) prj Q ≡

(P1, . . . , Pi, . . . , Pm) prj Q ∨�i−1
t=1

(
�t−1

h=0 Ph ∧ ε, Pt ∧ ¬ε, P(t+1,..,i), (P(1,..,i))
⊕, . . . , Pm) prj Q∨

(
�i−1

h=0 Ph ∧ ε, Pi ∧ ¬ε, (P(1,..,i))
⊕, . . . , Pm) prj Q

L31 (P1, . . . , (Pi, . . . , Pj)
⊕, . . . , Pm) prj ε ≡

(P1, . . . , (Pi; . . . ; Pj)
+, . . . , Pm) prj ε

L32 (P1, . . . , (Pi, . . . , Pm)⊕, R1, . . . , Rn) prj Q ≡
(P1, . . . , (Pi, . . . , Pm)�, Pi, . . . , Pm, R1, . . . , Rn) prj Q

L33 (P1, . . . , (Pi, . . . , Pm)⊕) prj Q ≡
((P1, . . . , (Pi, . . . , Pm)�, Pi, . . . , Pm) prj Q)∨
((P1, . . . , (Pi, . . . , Pm ∧ �ε)⊕) prj Q) ∧ ¬�ε

L34 (P⊕, P) prj Q ⊃ (P, P⊕) prj Q

L35 P⊕ prj Q ≡ (P, P �) prj Q ∨ (P ∧ ¬�ε) prj Q

3. Normal Form of PPTL

Let Q be a PPTL formula and Qp denote the set of
atomic propositions appearing in Q. The normal form of
Q can be defined as follows:

Q ≡
n0�

j=1

(Qj ∧ ε) ∨
n�

t=1

(Qt ∧©Q
′
t) (1)

where Qj ≡ ∧m0
k=1 ˙qjk, Qt ≡ ∧m

h=1 ˙qth, l = |Qp|, 1 ≤
n (also n0) ≤ 3l, 1 ≤ m (also m0) ≤ l, qjk , qth ∈ Qp;
for any r ∈ Qp, ṙ means r or ¬r; Q

′
t is a general PPTL

formula.
In some circumstances, for convenience, we write Qe∧ε

instead of
∨n0

j=1(Qj∧ε) where Qe is a state formula or true.
Thus,

Q ≡ (Qe ∧ ε) ∨
r�

i=1

(Qi ∧©Q
′
i) (2)

Further, in a normal form, if
∨r

i=1 Qi ≡ true and∨
i�=j(Qi ∧ Qj) ≡ false, it is called a complete normal

form. The complete normal form plays an important role in
transforming the negation of a formula into its normal form.
For example, if formula P is in its complete normal form:

P ≡ Pe ∧ ε ∨
r�

i=1

(Pi ∧©P
′
i) (3)

The normal form of ¬P can be written as follows:

¬P ≡ ¬Pe ∧ ε ∨
r�

i=1

(Pi ∧©¬P ′
i) (4)

In addition, any PPTL formula P can be rewritten to its
normal form in model theory. The proof and the algorithms
transforming PPTL formulas into their normal forms and
complete normal forms can be found in [7, 8]. This idea
inspires us to prove that any PPTL formula can be rewritten
into its normal form in our axiom system. Then, we need
to consider only the normal form of formulas rather than
various structures of PPTL for proving the completeness of
the axiom system.

4. Axiom System Πpptl

Let P and Q be PPTL formulas. For convenience of de-
duction, we denote � P ↔ Q by P ∼= Q.
[Axioms] The axioms are divided into three groups w.r.t
finite or infinite intervals or both, where P , P

′
, Pi, P

′
i ,

Q, Q
′
, Ri are PPTL formulas, and w is any state formula;

R0
df= P0

df= ε; 1 ≤ i ≤ j ≤ m; 1 ≤ h ≤ m and h < i or
h > j (h, i, j, m, n ∈ N0).

Group 1: Axioms over both finite and infinite intervals

TAU � ψ where ψ is an instance of propositional tautologies.
NXN � ©P → ¬©¬P
NXC ©P ;Q ∼= ©(P ;Q)
PNX (©P, P1, . . . , Pm) prj ©Q ∼=

©(P ; (P1, . . . , Pm) prj Q)

PDF (P1, . . . , (Pi ∨ P ′
i), . . . , Pm) prj Q ∼=

((P1, . . . , Pi, . . . , Pm) prj Q)∨
(P1, . . . , P

′
i , . . . , Pm) prj Q

PDB (P1, . . . , Pm) prj (Q ∨Q′
) ∼=

((P1, . . . , Pm) prj Q) ∨ (P1, . . . , Pm) prj Q
′

PSM (P1, . . . , w ∧ ε, Pi, . . . , Pm) prj Q ∼=
(P1, . . . , w ∧ Pi, . . . , Pm) prj Q

PSB (P1, . . . , Pm) prj (w ∧Q) ∼= w ∧ (P1, . . . , Pm) prj Q
PSF (w ∧ P1, . . . , Pm) prj Q ∼= w ∧ (P1, . . . , Pm) prj Q
PEE (P1, . . . , Pi ∧ �ε, . . . , Pm) prj Q ∼=

(P1, . . . , Pi, ε, . . . , Pm) prj Q
PEC (P1, P2, . . . , Pm) prj ε ∼=

(P1, (P2, . . . , Pm) prj ε) prj ε ∼=
((P1, . . . , Pm−1) prj ε, Pm) prj ε

PIF P ∧ ¬�ε prj Q ∼= P ∧ ¬�ε prj Q ∧ ε
PEB P prj ε ∼= P
PEF ε prj P ∼= P
INX (©P, P1, . . . , (Pi, . . . , Pj)

⊕, . . . , Pm) prj ©Q ∼=
©(P ; (P1, . . . , (Pi, . . . , Pj)

⊕, . . . , Pm) prj Q)

IDF (P1, . . . , (P(i,..,j))
⊕, . . . , (Ph ∨ P ′

h), . . . , Pm) prj Q ∼=
(P1, . . . , (Pi, . . . , Pj)

⊕, . . . , Ph, . . . , Pm) prj Q∨
(P1, . . . , (Pi, . . . , Pj)

⊕, . . . , P
′
h, . . . , Pm) prj Q

IDB (P1, . . . , (Pi, . . . , Pj)
⊕, . . . , Pm) prj (Q ∨Q′

) ∼=
((P1, . . . , (P(i,..,j))

⊕, . . . , Pm) prj Q)∨
(P1, . . . , (P(i,..,j))

⊕, . . . , Pm) prj Q
′

ISM (P1, . . . , (P(i,..,j))
⊕, . . . , w ∧ ε, Ph, . . . , Pm) prj Q ∼=

(P1, . . . , (Pi, . . . , Pj)
⊕, . . . , w ∧ Ph, . . . , Pm) prj Q

ISB (P1, . . . , (Pi, . . . , Pj)
⊕, . . . , Pm) prj (w ∧Q) ∼=

w ∧ (P1, . . . , (Pi, . . . , Pj)
⊕, . . . , Pm) prj Q

ISF (w ∧ P, P1, . . . , (Pi, . . . , Pj)
⊕, . . . , Pm) prj Q ∼=

w ∧ (P, P1, . . . , (Pi, . . . , Pj)
⊕, . . . , Pm) prj Q

IEE (P1, . . . , (Pi, . . . , Pj)
⊕, . . . , Ph ∧ �ε, . . . , Pm) prj Q ∼=

(P1, . . . , (Pi, . . . , Pj)
⊕, . . . , Ph, ε, . . . , Pm) prj Q

IEC (P1, . . . , (P(i,..,j))
⊕, . . . , Pm) prj ε ∼=

(P1, . . . , (Pi; . . . ;Pj)
+, . . . , Pm) prj ε

IUP (P1, . . . , (Pi, . . . , Pj)
⊕, . . . , Pm) prj Q ∼=

(P1, . . . , Pi, . . . , Pj , . . . , Pm) prj Q∨
(P1, . . . , Pi, . . . , Pj , (Pi, . . . , Pj)

⊕, . . . , Pm) prj Q
IUM (R0, . . . , Rn, (P1, . . . , Pi)

⊕, . . . , Pm) prj Q ∼=
(R0, . . . , Rn, P1, . . . , Pi, . . . , Pm) prj Q ∨�i−1

t=1

274

(R(0,..,n),
�t−1

h=0 Ph ∧ ε, Pt ∧ ¬ε, P(t+1,..,i), (P(1,..,i))
⊕,

. . . , Pm) prj Q ∨ (R0, . . . , Rn,
�i−1

h=0 Ph ∧ ε, Pi ∧ ¬ε,
(P(1,..,i))

⊕, . . . , Pm) prj Q
IEU (P1, . . . , (Pi, . . . , Pm)⊕, R1, . . . , Rn) prj Q ∼=

(P1, . . . , (Pi, . . . , Pm)� , Pi, . . . , Pm, R1, . . . , Rn) prj Q
IFI (P1, . . . , (Pi, . . . , Pm)⊕) prj Q ∼=

((P1, . . . , (Pi, . . . , Pm)� , Pi, . . . , Pm) prj Q)∨
((P1, . . . , (Pi, . . . , Pm ∧ �ε)⊕) prj Q) ∧ ¬�ε

IDP � P+;P+ → P+

Group 2: Axioms over infinite intervals

EEI � ¬�ε

Group 3: Axioms over finite intervals

CEL (P1;©nε) ∧ (P2;©nε) ∼= (P1 ∧ P2);©nε
EEF � �ε

[Inference Rules] In addition, the axiom system contains
inference rules given in Group 4.

Group 4: Inference rules

MP � P → Q, � P =⇒ � Q
IMP1 � Pi → P

′
i (1 ≤ i ≤ m), � Q→ Q′ =⇒

� (P1, . . . , Pi, . . . , Pm) prj Q→
(P

′
1 , . . . , P

′
i , . . . , P

′
m) prj Q′

IMP2 � Pi → P
′
i (1 ≤ i ≤ j ≤ m), � Q→ Q′ =⇒

� (P1, . . . , (P(i,..,j))
⊕, . . . , Pm) prj Q→

(P
′
1 , . . . , (P

′
(i,..,j))

⊕, . . . , P
′
m) prj Q′

ALW � P =⇒ � �P
NXT1 � P1 ∧ . . . ∧ Pm → Q⇒� ©P1 ∧ . . . ∧©Pm → ©Q
NXT2 � P → (Q ∨©P) =⇒ � P → (�Q ∨ � © P)

[Theorems] A set of selected theorems is given and we
choose one of them to prove. The others can be proved in a
similar way.

T1 ©P ∨©Q ∼= ©(P ∨Q) T2 ©P ∧©Q ∼= ©(P ∧Q)
T3 false ∼= ©false T4 �P ∼= P ∨©�P
T5 ¬�P ∼= ©¬P T6 �P ∼= P ∧©�P (infinite)
T7 �P ∼= P ∧��P T8 � �P → P
T9 P ∗;P ∗ ∼= P ∗

T10 � more→ (¬© P ↔ ©¬P)
T11 � (P⊕, P) prj Q→ (P, P⊕) prj Q
T12 (P1 ∧ ε, P2, . . . , Pm) prj Q ∼= P1 ∧ ε; (P(2,..,m)) prj Q

PROOF OF T9

(1) P ∗ ∼=(ε prj ε) ∨ P⊕ prj ε DEF OF {�, ∗}
(2) ∼=ε ∨ P+ DEF OF +
(3) P ∗;P ∗ ∼=(ε ∨ P+, ε ∨ P+) prj ε (2),DEF OF ;
(4) ∼=(ε, ε) prj ε ∨ (ε, P+) prj ε∨

(P+, ε) prj ε ∨ (P+, P+) prj ε PDF
(5) ∼=ε ∨ P+ ∨ P+ ∧ �ε ∨ P+;P+ PEE,PEB
(6) ∼=P ∗ ∨ P+;P+ TAU,(2)
(7) � P ∗ → P ∗;P ∗ TAU,(6)
(8) � P+;P+ → P ∗ IDP,TAU,(2)
(9) � P ∗;P ∗ → P ∗ TAU,(6)(8)
(10) P ∗;P ∗ ∼= P ∗ (7)(9)

5. Soundness and Completeness of Πpptl

Before proving the completeness of Πpptl, we first con-
sider the soundness of the axiom system.

Theorem 1 (Soundness) The axiom system Πpptl is sound,
i.e. for all PPTL formula P , � P =⇒|= P .

Proof

It is readily to prove all the axioms are valid and all the
inference rules preserve validity in model theory. The detail
is omitted here. ��
[Completeness] The proof of the completeness of the ax-
iom system is based on the partition of formulas into ter-
minable and non-terminable formulas and also on the nor-
mal form of PPTL formulas.

Basically, the normal form and complete normal form
are the same as that in model theory but they are defined
within the axiom system. The normal form of Q in Πpptl

can be defined as follows:

Q ∼= Qe ∧ ε ∨
n�

t=1

(Qt ∧©Q
′
t) (5)

where Qe, Qt, Q
′
t, n are defined in the same way as the nor-

mal form in model theory. Further, if
∨n

t=1 Qt
∼= true and∨

i�=j(Qi ∧ Qj) ∼= false, the normal form is a complete
normal form.

In Πpptl, it is not difficult to prove the following
conclusions:
1© Any PPTL formula P rewritten to its normal form in
Πpptl can be rewritten to its complete normal form in Πpptl.
2© If PPTL formulas P1, . . . , Pm, Q have been rewritten

to normal forms in Πpptl, (P1, . . . , Pm) prj Q can be
rewritten to its normal form.
3© If P1, . . . , Pm, Q and (P1, . . . , Pm) prj Q

have been rewritten to normal forms in Πpptl,
(P1, . . . , (Pi, . . . , Pl)⊕, . . . , Pm) prj Q can be rewritten to
its normal form in Πpptl.

Using the conclusions given above, we can prove the fol-
lowing theorem by induction on the syntax of PPTL.

Theorem 2 Any PPTL formula can be rewritten to its nor-
mal form in Πpptl.

Theorem 2 tells us that any PPTL formula can be trans-
formed into its normal form by means of axioms and infer-
ence rules. This conclusion plays an important role in the
proof of completeness since we only need to consider the
normal form of any formulas rather than different structures
of formulas.

By the definitions of terminable and non-terminable for-
mula given in Definition1, it is readily to prove the follow-
ing facts:
Fact1 A PPTL formula P is a terminable formula iff P is
not a non-terminable formula.

275

Fact2 For any PPTL formula P , if P is a terminable for-
mula, P is satisfiable.

From Fact2, we get to the following lemma.

Lemma 1 For any PPTL formula P , if P is unsatisfiable,
P is not terminable.

Lemma 2 If a PPTL formula P is non-terminable, the nor-
mal form of the formula does not contain the terminal prod-
uct pe ∧ ε, where pe �≡ false, i.e.

P ≡
n�

i=1

pi ∧©Pi

further, every sub-formula Pi is non-terminable.

Proof

We prove this Lemma in two steps.
(1) The normal form of a non-terminable formula P does
not contain terminal product pe ∧ ε.
Suppose that the normal form of P contains the terminal
product, that is, P ≡ pe∧ε∨∨n

i=1 pi∧©Pi and pe �≡ false.

P ∧ �ε ≡ (pe ∧ ε ∨�n
i=1 pi ∧©Pi) ∧ �ε

≡ pe ∧ ε ∨�n
i=1 pi ∧©Pi ∧ �ε

Since pe �≡ false and pe is a state formula, we have pe∧ε �≡
false and P ∧ �ε �≡ false. By Definition1, we have P is
a terminable formula. This contradicts with the condition.
(2) Every sub-formula Pi is non-terminable.
From (1), we have P ≡ ∨n

i=1 pi ∧ ©Pi. We assume that
there exists a sub-formula Pi being a terminable formula.
Without loss of generality, let P1 be a terminable formula.
By Definition1, we have P1 ∧ �ε �≡ false.

P ∧ �ε ≡ (
�n

i=1 pi ∧©Pi) ∧ �ε
≡ p1 ∧©P1 ∧ �ε ∨�n

i=2 pi ∧©Pi ∧ �ε
≡ p1 ∧©(P1 ∧ �ε) ∨�n

i=2 pi ∧©Pi ∧ �ε

Since P1∧�ε �≡ false, p1∧©(P1∧�ε) �≡ false. Further,
we have P∧�ε �≡ false. Hence, P is a terminable formula.
This contradicts with the condition. ��

By Lemma 2, we obtain the following corollary.

Corollary 1 Suppose that the normal form of a PPTL for-
mula P is pe ∧ ε ∨ ∨n

i=1 pi ∧©Pi.
(1) If pe �≡ false holds, P is a terminable formula.
(2) If there exists a sub-formulas Pi being a terminable for-
mula, P is a terminable formula.

By Corollary 1 and Theorem 1, it is readily to prove the
following facts:
Fact3 If P is non-terminable, P can be transformed into the
normal form without the terminal product pe ∧ ε in Πpptl,
where �� pe → false

P ∼=
n�

i=1

pi ∧©Pi

and for all i, Pi is non-terminable.
Fact4 If w is a state formula and �� ¬w, there exists a model

σ =< s >, such that σ |= w.
Fact5 � A → false, � B → false ⇒� A∨B → false.
Fact6 �� A∧B → false ⇒�� A → false, �� B → false.
Fact7 �� ©P → false ⇒�� P → false.

In the proof of Lemma 3, we will use the fix-point theo-
rem [26] and the fix-point induction given below [29].

Theorem 3 (Tarski’s Fix-Point Theorem) Every mono-
tonic function F over a complete lattice < B,�> has a
unique least fix point �n∈ωF n(⊥) and a unique greatest
fix point �n∈ωF n(�). (A. Tarski 1955)

Theorem 4 (Scott’s Fix-Point Induction) Let B be a
complete partial order with a bottom (⊥), F : B → B
a continuous function, and D an inclusion subset of B.
If ⊥ ∈ D and ∀x ∈ B. x ∈ D → F (x) ∈ D, then
fix(F) ∈ D.

Lemma 3 If a PPTL formula P is non-terminable and ��
P → false, P is satisfiable.

Proof

To prove this, we need to generate a state sequence and to
prove the interval determined by the state sequence satisfies
P .
(1) Generating a state sequence.

Since P is non-terminable, by Fact3, we have P ∼=∨n
i=1 pi ∧ ©Pi and all the sub-formulas Pi are non-

terminable. So we can repeatedly unfold formula P using
the normal form in Πpptl. For convenience, we make some
notations. Let P−1

i denote P , and k be the times of un-
folding P . Thus, in general, we have the following formal
relation:

P k
i
∼=

nk+1�
i=1

pk+1
i ∧©P k+1

i (k = −1, 0, 1, . . .) (6)

In following table, Sk denotes the set of formulas P k
i , ob-

tained by the k-th unfolding P (k ≥ 0). In particular, we
choose only one formula in Sk, P k

mk
, to generate a new set

Sk+1, where 1 ≤ mk ≤ nk. This idea will be used in the
generation of the state sequence.

k i Formula set S

-1 – P∼=�n0
i=1 p0

i ∧©P 0
i S0={P 0

i |1≤i≤n0}
0 m0 P 0

m0
∼=�n1

i=1 p1
i ∧©P 1

i S1={P 1
i |1≤i≤n1}

...
...

...
...

k mk P k
mk

∼=�nk+1
i=1 pk+1

i ∧©P k+1
i Sk+1={P k+1

i |1≤i≤nk+1}
...

...
...

...

The following deduction denotes a loop for generating
a state sequence, where each iteration with a value of k can
generate a new state sk+1 (k = −1, 0, 1, · · · , ω). Since
the generating process is non-terminable (because P is non-
terminable), we may get an infinite state sequence σ =<

276

s0, s1, . . . >.

(1) �� P k
i → false {PREMISE}

(2) �� �nk+1
i=1 pk+1

i ∧©P k+1
i → false {Fact3 }

(3) ∃mk+1 1 ≤ mk+1 ≤ nk+1 and
�� pk+1

mk+1 ∧©P k+1
mk+1 → false {Fact5}

(4) �� pk+1
mk+1 → false and �� P k+1

mk+1 → false {Fact6, Fact7}
(5) ∃ sk+1 < sk+1 >|= pk+1

mk+1 and
�� P k+1

mk+1
→ false {Fact4}

(2) P ∼= (
∧k

i=0 ©ipi
mi

) ∧©k+1P k
mk

∨ P

It is easy to prove this conclusion by induction on
k. Thus, by Theorem 1, we have P ≡ (

∧k
i=0 ©ipi

mi
) ∧

©k+1P k
mk

∨P . In the following, we prove the infinite state
sequence to be a model of (

∧ω
i=0 ©ipi

mi
) ∧©ωP ω

mω
, so it

is also a model of P .
(3) Each prefix of the infinite state sequence is a prefix of
the final model.

The proof proceeds inductively on the length of the pre-
fix of the state sequence.
Base: k = 0, σ0 =< s0 >|= p0

m0
=

∧0
i=0 ©ipi

mi
, so the

prefix of interval < s0 > is a prefix of the final model.
Induction: for k = n, we assume that σn is a prefix of the
final model, then we have < sn+1 >|= pn+1

mn+1
and σn |=

∧n
i=0 ©ipi

mi
imply σn+1 |= ∧n+1

i=0 ©ipi
mi

. So, σn+1 is
also a prefix of the final model.
(4) The infinite state sequence σ = σω =< s0, s1, . . . > is
the final model.

First, we make some notations. Let σ−1
s = ø, σi

s =
{(0, s0), . . . , (i, si)} (i ∈ Nω), where σi

s denotes a coded
set corresponding to the prefix interval σi. Then we define a
set B = {σ−1

s , σ0
s , σ1

s , . . .} and a binary relation ⊆ over B,
that is, σi

s ⊆ σj
s iff i ≤ j, and also a function F : B → B ,

F (σi
s) = σi+1

s , i = −1, 0, 1, . . .
Further, it is not hard to prove the following two conclu-
sions: (4.1) (B,⊆) is a complete lattice. (4.2) F is contin-
uous. Then by Tarski’s Fix-Point Theorem, we can get the
least fix point of F ,

fix(F) = �n∈NωF
n(σ−1

s) = ∪n∈NωF
n(σ−1

s) = σω
s

where σω
s denotes the coded set corresponding to the whole

state sequence. In the previous step, we have proved each
prefix σi determined by the set σi

s to be a prefix of a model
of P . Therefore, by Scott’s Fix-Point Induction, σω is a
model of P . Thus, P is satisfiable. ��
Theorem 5 (Completeness) The axiom system Πpptl is
complete, i.e. for all PPTL formula P , |= P =⇒� P .

Proof

|= P
⇐⇒ ¬P is unsatisfiable {validity and satisfiability}
⇐⇒ ¬P is not terminable and unsatisfiable {Lemma 1}
⇐⇒ ¬P is non-terminable and unsatisfiable {Fact1}

=⇒ � ¬(¬P) {Lemma 3}
⇐⇒ � P {TAU}

��

6. Example

In this section, we give an example to show how the ax-
iom system works. A requirement for a system is ” p is true
at every even state”, where p is an atomic proposition. The
system can be specified by the following formula,

((©2ε� , r ∧ ε) prj (�p; r ∧ ε)) ∧ halt(r) ∧©2kε

where halt(r) df= �(ε ↔ r). We want to prove the system
satisfies the property

∧k
m=0 ©2mp, that is,

� ((©2ε� , r∧ε) prj (�p; r∧ε))∧halt(r)∧©2kε→
k�

m=0

©2mp

First, it is readily to prove the following theorems in Πpptl.

ET1 �p; r ∧ ε ∼= p ∧ (
�

�p; r ∧ ε)
ET2 r ∧ halt(r) ∼= r ∧ ε
ET3 ((ε, r ∧ ε) prj (�p; r ∧ ε)) ∧ halt(r) ∧©P ∼= false
ET4 �p; r ∧ ε ∼= p ∧ r ∧ ε ∨ p ∧©(�p; r ∧ ε)
ET5 � ©2P ∧ halt(r) → ©2(P ∧ halt(r))

Proof

The proof proceeds inductively on k.
Base: k = 0
(1) ((©2ε� , r ∧ ε) prj (�p; r ∧ ε)) ∧ halt(r) ∧ ε

∼= ((©2ε� , r ∧ ε) prj (p ∧ (
�

�p; r ∧ ε))) ∧ halt(r) ∧ ε
{ET1}

(2) ∼= p ∧ ((©2ε� , r ∧ ε) prj (
�

�p; r ∧ ε)) ∧ halt(r) ∧ ε
{ISB}

(3) � ((©2ε� , r ∧ ε) prj (�p; r ∧ ε)) ∧ halt(r) ∧ ε→ p
{TAU}

Induction: Suppose for all k ≥ 0, the conclusion holds.
Then for k + 1,

(1) ((©2ε� , r ∧ ε) prj (�p; r ∧ ε)) ∧ halt(r) ∧©2k+2ε
∼= ((©2ε⊕, r ∧ ε) prj (�p; r ∧ ε)) ∧ halt(r) ∧©2k+2ε

{DEF OF �,ET3,TAU}
(2) ∼= ((©2ε, ε, r ∧ ε) prj (�p; r ∧ ε)) ∧ halt(r) ∧©2k+2ε∨

((©2ε,©2ε⊕, r ∧ ε) prj (�p; r ∧ ε)) ∧ halt(r)∧
©2k+2ε {IUP,ISM}

(3) ∼= p ∧ r ∧ ((©2ε,©2ε� , r ∧ ε) prj ε) ∧ halt(r) ∧©2k+2ε
∨p ∧ ((©2ε,©2ε� , r ∧ ε) prj © (�p; r ∧ ε)) ∧ halt(r)
∧©2k+2 ε {DEF OF �,ET4, IDB, ISB}

(4) ∼= p ∧ ((©2ε,©2ε� , r ∧ ε) prj © (�p; r ∧ ε)) ∧ halt(r)
∧©2k+2 ε {ET2,TAU}

(5) ∼= p ∧©2((©2ε� , r ∧ ε) prj (�p; r ∧ ε)) ∧ halt(r)∧
©2k+2ε {INX,NXC,PSM,PEB}

(6) � ((©2ε� , r ∧ ε) prj (�p; r ∧ ε)) ∧ halt(r) ∧©2k+2ε
→ p ∧©2(((©2ε� , r ∧ ε) prj (�p; r ∧ ε)) ∧ halt(r)
∧©2k+2 ε) {T2, ET5, (5)}

(7) � ((©2ε� , r ∧ ε) prj (�p; r ∧ ε)) ∧ halt(r) ∧©2kε→�k
m=0 ©2mp {HYPOTHESIS}

277

(8) � ((©2ε� , r ∧ ε) prj (�p; r ∧ ε)) ∧ halt(r) ∧©2k+2ε)

→ �k+1
m=0 ©2mp {NXT1,TAU}

So the property also holds on k + 1. Thus, the system satis-
fies the property. ��

7. Conclusion

In this paper, we presented a complete axiom system for
PPTL which supports both finite and infinite models. We
also proved the soundness and completeness of the axiom
system. Further, an example was given to illustrate how
the system works. This enables us to verify properties of
systems by means of the deductive approach. However, in
order to verify properties of a real system, a theorem prover
is required. Therefore, we have developed a theorem prover
based on PVS to support automatic verification. It is merely
a prototype and lots of efforts are needed to improve it.
Moreover, to examine the axiomatic system further, several
case studies with larger examples are also required.

In addition, as practical applications, we will fur-
ther investigate verification techniques for composite web-
services based on PVS using PPTL since data flow is inten-
sively involved with the composition process and the Model
Checking approach might be unsuitable. To do so, lots of
research work are needed, and we are motivated to formal-
ize some useful verification techniques using PPTL in this
area in the future.

References

[1] M. Abadi. An axiomatization of Lamport’s temporal logic
of actions. LNCS, 458:57–69, 1990.

[2] B. Banieqbal and H. Barringer. Temporal logic with fixed
points. LNCS, 389:62–74, 1987.

[3] W. Bledsoe and D. Loveland. Automating Theorem Proving:
After 25 Years. Amer Mathematical Society, USA, 1984.

[4] H. Bowman and S. Thompson. A decision procedure and
complete axiomatization of finite interval logic with projec-
tion. Journal of Logic and Computation, 13:195–239, 2003.

[5] E. Clarke and E. Emerson. Design and synthesis of syn-
chronisation skeletons using branching time temporal logic.
LNCS, 131:52–71, 1981.

[6] E. Clarke, E. Emerson, and A. Sistla. Automatic verifica-
tion of finite state concurrent system using temporal logic
specification. ACM Trans. on Programming Languages and
Systems, 8(2):244–263, 1986.

[7] Z. Duan, C. Tian, and L. Zhang. A decision procedure for
propositional projection temporal logic. Acta Informatica,
45:43–78, 2008.

[8] Z. Duan, X. Yang, and M. Koutny. Frammed temporal logic
programming. Science of Computer Programming, 70:31–
61, 2008.

[9] G. Holzmann. The model checker SPIN. IEEE Trans. on
Software Engineering, 23(5):279–295, 1997.

[10] Y. Kesten and A. Pnueli. A complete proof system for
QPTL. In: Proceedings of the 10th IEEE Symposium on
Logic in Computer Science, pages 2–12, 1995.

[11] S. Kripke. Semantical analysis of modal logic I: normal
propositional calculi. Z. Math. Logik Grund. Math., 9:67–
96, 1963.

[12] F. Kröger. Temporal Logic of Programs. Springer-Verlag,
1987.

[13] L. Lamport. The temporal logic of actions. ACM TOPLAS,
16:872–923, 1994.

[14] S. Liu and Y. Chen. A relation-based method combining
functional and structural testing for test case generation.
Journal of Systems and Software, 81:234–248, 2008.

[15] S. Liu and H. Wang. An automated approach to specification
animation for validation. Journal of Systems and Software,
80:1271–1285, 2007.

[16] Z. Manna and A. Pnueli. The Temporal Logic of Reactive
and Concurrent System. Springer-Verlag, New York, 1992.

[17] K. McMillan. Symbolic Model Checking: An Approach to
the State Explosion Problem. Kluwer Academic Publisher,
Dordrecht, 1993.

[18] B. Moszkowski. Some very compositional temporal prop-
erties. In: Proceedings of Programming Concepts, Methods
and Calculi, IFIP Trans., A-56:307–326, 1994.

[19] B. Moszkowski. Compositional reasoning about projected
and infinite time. In: Proceedings of the 1st IEEE Inter-
national Conference on Engineering of Complex Computer
Systems (ICECCS’95), pages 238–245, 1995.

[20] S. Owre, J. Rushby, and N. Shankar. PVS: A prototype
verification system. In: Proceedings of the 11th Interna-
tional Conference on Automated Deduction (CADE), LNAI,
607:748–752, 1992.

[21] B. Paech. Gentzen-Systems for propositional temporal log-
ics. In: Proceedings of the 2nd Workshop on Computer Sci-
ence Logic, Duisburg (FRG), LNCS, 385:240–253, 1988.

[22] A. Pnueli and Y. Kesten. A deductive proof system for CTL.
In: Proceedings of the 13th International Conference on
Concurrency Theory, pages 24–40, 2002.

[23] J. Queille and J. Sifakis. Specification and verification of
concurrent systems in CESAR. In: Proceedings of the 5th
International Symposium in Programming, LNCS, 137:337–
351, 1982.

[24] N. Rescher and A. Urquhart. Temporal Logic. Springer-
Verlag, New York, 1978.

[25] R. Rosner and A. Pnueli. A choppy logic. In: Proceedings of
1st IEEE Symposium on Logic in Computer Science, pages
306–314, 1986.

[26] A. Tarski. A lattice-theoretical fixpoint theorem and its ap-
plications. Pacific J. Math, 5:285–309, 1955.

[27] C. Tian and Z. Duan. Model checking propositional pro-
jection temporal logic based on SPIN. In: Proceedings of
the 9th International Annual Conf. on Formal Engineering
Methods, LNCS, 4789:246–265, 2007.

[28] C. Tian and Z. Duan. Propositional projection temporal
logic, Buchi automata and ω-regular expressions. To appear
in: Proceedings of the 5th International Annual Conf. on
Thoery and Applications of Models of Computation (TAMC
2008), LNCS, 4978, 2008.

[29] G. Winskel. The Formal Semantics of Programming Lan-
guages. Foundations of Computing, MIT, USA, 1993.

278

