
Model Checking Rate-Monotonic Scheduler with TMSVL

Jin Cui

ICTT and ISN Lab
Xidian University

Xi’an, 710071, P.R.China
Email: cuijin xd@126.com

Zhenhua Duan*

ICTT and ISN Lab
Xidian University

Xi’an, 710071, P.R.China
Email: zhhduan@mail.xidian.edu.cn

Cong Tian

ICTT and ISN Lab
Xidian University

Xi’an, 710071, P.R.China
Email: ctian@mail.xidian.edu.cn

Abstract—This paper presents a model checking-based
schedulability checking approach for Rate-Monotonic
Scheduling (RMS) algorithm. To do so, RMS algorithm is
modelled with TMSVL, and the desired property, i.e. schedu-
lability, is specified with the property specification language
in TMSVL. Next, whether RMS algorithm is schedulable
on a set of tasks is verified by checking whether the
desired property is valid on the TMSVL model. A significant
advantage of TMSVL is the mechanism of adjustable time
intervals which makes an effective reduction on the state
space.

Keywords-model checking; Rate-Monotonic Scheduler;
TMSVL; real-time systems

I. INTRODUCTION

RMS is a classical scheduling algorithm for periodic

tasks. It was proposed by Liu and Layland in 1973 and

shown to be optimum among all fixed priority scheduling

algorithms [1]. Let τ be a set containing n periodic tasks

with Pi and Ci denoting the period and execution time of

task τi ∈ τ , here 1 ≤ i ≤ n. A schedulability condition

for RMS has been derived under the assumptions that (1)

all tasks start simultaneously, (2) deadlines of tasks are

equal to their periods, and (3) tasks are independent, i.e.

an arrival of a task does not depend on other tasks in τ .

Under these assumptions, Liu and Layland proved that the

tasks in τ are schedulable with RMS if

U =
n∑

i=1

Ci
Pi

� n(21/n − 1);

that is, the utilization factor U is not more than n(21/n−
1). However, this is a sufficient but not necessary condi-

tion. There may exist a set of tasks where U > n(21/n−1)
but the tasks are still schedulable with RMS. Thus, lots of

researches have been carried out to improve the schedu-

lability bound of RMS.

Bini et al. [2] derived a tighter sufficient condition: RMS

is feasible for a set of n periodic tasks if
∏n

i=1(
Ci
Ti

+1) ≤ 2.

Exact tests algorithms [3] based on response time analysis

can provide sufficient and necessary schedulability con-

ditions for RMS. However, they are too complex to be

executed on large task sets. Further, the analysis process

is complicated and slight modifications of the scheduling

policies will make exact tests algorithms unavailable.

TMSVL[4] is a parallel programming language useful

in modeling, simulation, and verification of real-time sys-

tems. With systems modeled in TMSVL and properties

specified with property specification language in TMSVL,

a unified model checking approach can be applied to verify

whether the property is valid on the model.

In this paper, we verify schedulability of RMS algorithm

on a set of tasks with a unified model checking approach

of TMSVL. To do so, RMS algorithm is modelled with

TMSVL, and the desired property, i.e. schedulability,

is specified with the property specification language in

TMSVL. Next, whether RMS algorithm is schedulable on

a set of tasks is verified by checking whether the desired

property is valid on the TMSVL model. A significant

advantage of TMSVL is the mechanism of adjustable time

intervals which makes an effective reduction on the state

space. The method is straightforward and can be extended

to solve a series of relevant problems. For instance, when

scheduling policies change, the schedulability still can be

verified by making adjustment on the model of scheduler.

The paper is organized as follows. The next section in-

troduces TMSVL language. Section 3 presents the unified

model checking approach with TMSVL. In Section 4, how

RMS algorithm is modeled and verified with TMSVL is

discussed in details. Section 5 presents the related work

and Section 6 concludes the paper.

II. TMSVL

TMSVL is a real-time extension of MSVL [5] by

making time explicit. In TMSVL, variables T and Ts are

used to describe time and time increment, respectively.

Let Prop be a countable set of atomic propositions, N0

the set of non-negative integers, and V the set of variables.

A state s is a pair of assignments (Ivar, Iprop), where for

each variable v ∈V defines s[v] = Ivar[v], and for each

π ∈Prop defines s[π] = Iprop[π]. Ivar[v] is a value in the

data domain D or nil (undefined), and Iprop[π] is true or

false. An interval σ = (s0, s1, . . .) is a non-empty (even

infinite) sequence of states with its length denoted by |σ|.
Generally, a model of a TMSVL program is an interval.

TMSVL consists of arithmetic expressions, boolean ex-

pressions, and basic statements. The arithmetic expression

e and boolean expression b are defined as follows.

e ::= n | x | ©x | -©x | e0 op e1(op ::= +| − | ∗ |/|mod)
b ::= true | false | e0 = e1 | e0 < e1 | ¬b | b0 ∧ b1

where n is a constant, x is a variable; ©x and -©x denote

x concerning the next state and previous state over an

interval, respectively. Elementary statements of TMSVL

are defined as follows.

2014 19th International Conference on Engineering of Complex Computer Systems

978-1-4799-5482-7/14 $31.00 © 2014 IEEE

DOI 10.1109/ICECCS.2014.37

202

1. MSVL statement p
2. Time constraint statment (t1, t2)tp
3. Conjunction statement tp1 ∧ tp2
4. Selection statement tp1 ∨ tp2
5. Sequential statement tp1 ; tp2
6. Parallel statement tp ‖ tq
7. Projection statement {tp1, . . . , tpm} prj {tp}
8. Conditional statement if b then tp else tq
9. While statement while (b) { tp }

MSVL statements are included in TMSVL since

TMSVL is an extension of MSVL. tp is supposed to be a

TMSVL statement, t1 and t2 are arithmetic expressions,

and their values can be determined at each state. The time

constraint statement (t1, t2)tp means that tp is executed

over the time duration from t1 to t2. tp1 ∧ tp2 means that

tp1 and tp2 are executed concurrently, and can terminate

at the same time. Selection statement tp1 ∨ tp2 means tp1
or tp2 are executed. tp1; tp2 means that tp2 is executed

when tp1 finishes. Parallel statement tp ‖ tq means that tp
and tq are executed in parallel, while they are not required

to terminate at the same time.
Projection statement {tp1, . . . , tpm} prj {tp} means

tp is executed in parallel with tp1; tp2; . . . ; tpm over an

interval obtained by taking endpoints of the intervals over

which tp1, . . . , tpm are executed. An endpoint denotes the

first or the last state of an interval. If tp1, . . . , tpm are

identical, we usually use {(tp1)m} prj {tp} to represent

{tp1, . . . , tpm} prj {tp} for simplicity.
Conditional statement if b then tp else tq means that

if condition b is evaluated to true, then tp is executed,

otherwise tq is executed. Statement while (b) { tp }
allows statement tp to be executed repeatedly for a number

of times as long as condition b can be evaluated to true.

It terminates in case condition b becomes false.
TMSVL programs have the form clock(eT , eTs) ∧ q,

where clock(eT , eTs) is a clock generator, and q denotes

TMSVL statements. clock(eT , eTs) initializes T and Ts,

the time and time increment, with the evaluations of

arithmetic expressions eT and eTs, and enables T to

increase with the increment Ts. Meanwhile, Ts can be

set in q.
Execution of TMSVL programs depends on transforma-

tion of TMSVL programs into normal forms. A TMSVL

program p is in its normal form if p is written as:

p ≡
l1∨

i=1

pei ∧ ε ∨
l2∨

j=1

pcj ∧©pfj

where l1, l2, i, j ∈ N0 and l1 + l2 ≥ 1, pfj is a TMSVL

program; pei and pcj are formulas of the form: x1 = e1 ∧
. . . ∧ xm = em. ε means the termination of a program,

that is, there does not exist a next state. ©pfj means that

pfj will be executed at the next state. It has been proved

that any TMSVL programs can be transformed into normal

forms.
Given a TMSVL program p, we can construct a graph

named Normal Form Graph (NFG) that explicitly illus-

trates the state space of the program. An NFG is a directed

graph, denoted as G =< V,E >, with a node in the set

V of nodes representing a program in TMSVL and an

edge in the set E of edges representing a state. In fact,

NFG determines the models that satisfy the corresponding

TMSVL program.
Suppose the sets V and E are empty initially. NFG

G =< V,E > of a TMSVL program p can be constructed
by determining the set of nodes V and the set of edges E
inductively as follows:

1) V = V ∪ {p};

2) for all nodes q ∈ V \{ε, false}, if q ≡
l1∨

i=1

qei ∧ ε ∨
l2∨

j=1

qcj ∧©qfj , then V = V ∪ {ε, qfj} and E = E ∪
{(q, qei, ε), (q, qcj , qfj)} for each i and j with 1 ≤ i ≤ l1
and 1 ≤ j ≤ l2.

An element of the edges set E is a triple. For instance,

(q, qei, ε) denotes the directed edge from nodes q to ε with

the edge labeled with qei.

III. MODEL CHECKING TMSVL PROGRAMS

Suppose the TMSVL model of a system is p and the

property to be verified is φ. To check whether or not φ is

valid on p amounts to deciding whether p → φ is valid.

Further, whether p → φ is valid is equivalent to whether

p∧¬φ is unsatisfiable. This can be achieved by construct-

ing NFG of p ∧ ¬φ and then checking whether no paths

in the NFG are acceptable. Otherwise, an acceptable path

presents a counterexample in the program that violates the

property.

We have developed a prototyping tool named TMSVL

for supporting verification of real-time systems with

TMSVL. An overview of TMSVL is shown in Fig.1.

The input of TMSVL can be a TMSVL program or a

TMSVL program with a desired property. There are three

modes included in TMSVL: simulation, modeling, and

verification. In the simulation mode, a sequence of states

is generated by executing the program; in the modeling

mode, NFG of the input program is constructed; and in

the verification mode, TMSVL will verify whether or not

the input property is valid to the program. If it is not valid

to the program, a witness (counterexample) is provided.

Figure 1. Overview of TMSVL

Reduction is the main technology for implementation of

the three modes mentioned above. It includes state reduc-

tion and interval reduction. State reduction is to transform

the program into its normal form. Interval reduction makes

the execution of a TMSVL program stop or move to the

next state according to its normal form.

203

IV. MODELING AND VERIFICATION OF RMS

Within RMS algorithm, priorities of tasks to be sched-

uled are fixed and tasks with lower priorities can be

preempted by those with higher priorities. Further, the

priorities of the tasks are inversely proportional to their

periods [6]. As a result, tasks scheduled under RMS are

assumed to be periodic.

Let τ which consists of n tasks: τ1, τ2, . . . , and τn be

the set of tasks to be scheduled under RMS. Note that

n here can be any positive integer. For each task τi, its

period is Pi and execution time is Ci (1 ≤ i ≤ n).

A. Modeling RMS with TMSVL

Useful notations are given below.

• ri: a boolean variable. If the current request for task

τi is standing, ri = 1; otherwise, ri = 0.

• exi: a boolean variable. exi = 1 represents that task

τi is being executed, and exi = 0 is the contrary.

• aci: a real variable, with a non-negative value denot-

ing the accumulated running time of task τi in the

current period.

• runi: a boolean variable. If task τi is being executed,

runi = i; otherwise, runi = 0.

• runTaskNum: an integer variable, with a non-

negative value indicating the running task’s subscript.

That is, runTaskNum = i if task τi is running;

otherwise, runTaskNum = 0.

• d: a non-negative real variable indicating the time

required for finishing the remaining part of a running

task.

• di: a non-negative real variable representing the time

needed for the arrival of the next request of task τi .

• STi: a non-negative real constant indicating the re-

lease time of task τi.
• ETi: a non-negative real constant denoting the end

time of the last period of τi.
• Ni: a non-negative integer constant representing the

number of execution circles for task τi.

In the following, RMS is formalized as a TMSVL

program defined as RMS Sch.

RMS Sch
def
= clock(eT , eTs) ∧ TsSet ∧ ||ni=1(STi, ETi)τi

TsSet
def
=
1. keep(
2. if(runTaskNum! = 0)
3. then{i = runTaskNum
4. and if((T − STi)%Pi = 0)
5. then {d = Ci}
6. else{d = Ci − aci}
7. and Ts = min(d, d1, . . . , dn) }
8. else {Ts = min(d1, . . . , dn) }
9.)

The module TsSet is a keep() statement [5] of

MSVL, it means the lines of statements labeled from 2 to

8 which are in keep() are executed at every state expect

for the last one over an interval. TsSet sets the time

step Ts to eliminate states without events and maintain

states concerning schedulability verification. Events here

mean the arrivals of tasks’ requests or deadlines, as well as

the ends of tasks’ execution. min(d, d1, . . . , dn) in TsSet
returns the minimum in d, d1, . . . , and dn.

Formula ||ni=1(STi, ETi)τi means parallel execution of

n tasks. It specifies the RMS scheduling policies in-

ternally and initiates all the auxiliary variables. τi in

||ni=1(STi, ETi)τi denotes the TMSVL model of task τi
as defined below.

τi
def
= totali = 0 ∧ aci = 0∧
{((T, T + Pi)true)

Ni}prj{(T,ETi)�(ri = 1)} ∧ keep(Qi)

Projection statement is used here to express periodic

requests of each task. To maintain the consistency of time

in formula ||ni=1(STi, ETi)τi, Ni ∗ Pi = ETi − STi is

required. The scheduler is described by program Qi as

follows.

Qi
def
=
1. if(runi)
2. then{ exi=1
3. and if((T − STi)%Pi = 0)
4. then{©aci = Ts
5. and if(Ci > 1)
6 then{©ri=1}
7. else{©ri=0}}
8. else{©aci = aci + Ts
9. and if((T + Ts− STi)%Pi > 0)
10. then{if(aci + Ts < Ci)
11. then{©ri = 1 }
12. else{©ri = 0 and
13. ©exi = 0}}}}
14. else{ exi=0
15. and if((T − STi)%Pi = 0)
16. then{©aci=0
17. and ©ri = 1}
18. else{©aci = aci
19. and if((T + Ts− STi)%Pi > 0)
20. then{©ri = ri}}}

If task τi can be processed, exi is set as 1. If the current

state is a start of a new period, the value of aci at the next

state is set as the value of Ts at the current state. That is,

©aci = Ts. Nevertheless, the value of aci at the next

state is the sum of aci and Ts at the current state, i.e.

©aci = aci + Ts. It is essential to determine the value

of ri at the next state to decide whether task τi will be

finished. The value of exi is set as 0 if task τi has been

finished or can’t be executed. Meanwhile, if the current

state is the start of a new circle of τi, ri is set as 1 and

aci is set as 0.

B. Verification of schedulability

Following the assumptions in Section I, for a set τ of

periodic tasks, schedulability means each task in τ can

always be finished before or just at the start of its new

circle. The execution of τ will be repeated after
∏n

j=1 Pj

time units at most from T = min(STi). So we only need

to consider the schedulability in this finite time interval.

Particularly, the least common multiple of P1, P2, . . . , Pn

can play the same role as
∏n

j=1 Pj .

Based on model RMS Sch, aci = Ci means task

τi is finished in a period. Thus, schedulability can be is

described by φschedulable below.

φschedulable
def
= ||ni=1(STi, ETi)({((T, T + Pi)true)

Ni}prj

204

{(T + Pi, ETi) �(aci = Ci)})
This is the parallel of n formulas where n represents

the number of tasks. Sub-formula (STi, ETi)({((T, T +
Pi)true)

Ni}prj{(T + Pi, ETi)�(aci = Ci)}) means that

task τi always completes at the start of a new circle.

Projection construct is used to ensure aci = Ci for every

Pi time units over the duration (STi + Pi, ETi).
In order to execute and verify RMS with TMSVL, we

take a concrete task set τ = {τ1, τ2, τ3} as an example. For

each task, the period is P , the time required for execution

is C, and the time ST when the first request occurs are

given in the table below. All tasks are supposed to request

for execution simultaneously at T = 0.

Task τ1 τ2 τ3
P(ms) 6 8 12
C(ms) 2 3 2
ST T=0 T=0 T=0

By executing the established RMS model in TMSVL, the

values of the notions mentioned above at each state are

obtained and shown in Fig.2. Since the scheduler starts at

T = 0, at the first state (State0) the time is 0, and Ts = 2
leads to T = 2 at the second state (State1).

Figure 2. Result of simulation

We also verify the schedulability of RMS on τ .

The verification result shown in Fig.3 indicates that

RMS Sch → φschedulable is valid. That is, the task set

τ is schedulable under RMS.

Figure 3. Verification result

V. RELATED WORK

A timed state space analysis for real-time scheduling

systems via Timed Petri Nets based on the tool ORIS is

discussed in [7]. In [8], schedulability checking problem

was solved by reachability analysis on standard timed

automata with the tool TIMES. Both of the two work

relate to our work since they analyze the schedulability

of the scheduler with the help of formal models. How-

ever, compared with them, TMSVL is expressive enough

to describe systems and the desired properties. Thus, a

unified model checking approach can be applied to verify

the schedulability, which makes a transformation from

schedulability analysis to property verification. Moreover,

when a property is specified, we can model the system

with adjustable time interval Ts to reduce the number of

states as many as possible. This largely mitigates the state

explosion problem in verification of the real-time systems.

VI. CONCLUSION

We studied model checking-based schedulability check-

ing approach for RMS with TMSVL. With our tool

TMSVL, the whole state space of a TMSVL program

can be achieved and the desired property of the model

can also be verified automatically. The mechanism that

time intervals are adjustable for modeling improves the

efficiency of verification. This case study convinces us that

TMSVL is quite practical for modeling and verification of

real-time systems. In the near future, we will investigate

modeling and verification techniques for multiprocessor

systems and asynchronous real-time systems on the basis

of TMSVL.

ACKNOWLEDGMENT

This research is supported by NSFC Grant

Nos. 61133001, 61272117, 61272118, 61202038,

and 61322202, National Program on Key Basic

Research Project of China (973 Program) Grant No.

2010CB328102. * Corresponding author: Zhenhua Duan.

REFERENCES

[1] Y. Zou, M.-S. Li, and Q. Wang, “Analysis for scheduling
theory and approach of open real-time system,” Journal of
Software, vol. 14, no. 1, pp. 83–90, 2003.

[2] E. Bini, G. C. Buttazzo, and G. M. Buttazzo, “Rate mono-
tonic analysis: the hyperbolic bound,” Computers, IEEE
Transactions on, vol. 52, no. 7, pp. 933–942, 2003.

[3] Y. Manabe and S. Aoyagi, “A feasibility decision algorithm
for rate monotonic and deadline monotonic scheduling,”
Real-Time Systems, vol. 14, no. 2, pp. 171–181, 1998.

[4] M. Han, Z. Duan, and X. Wang, “Time constraints with tem-
poral logic programming,” in Formal Methods and Software
Engineering. Springer, 2012, pp. 266–282.

[5] Z.-H. Duan and M. Koutny, “A framed temporal logic
programming language,” Journal of Computer Science and
Technology, vol. 19, no. 3, pp. 341–351, 2004.

[6] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” Journal
of the ACM (JACM), vol. 20, no. 1, pp. 46–61, 1973.

[7] G. Bucci, A. Fedeli, L. Sassoli, and E. Vicario, “Timed state
space analysis of real-time preemptive systems,” Software
Engineering, IEEE Transactions on, vol. 30, no. 2, pp. 97–
111, 2004.

[8] E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi,
“Schedulability analysis using two clocks,” in Tools and
Algorithms for the Construction and Analysis of Systems.
Springer, 2003, pp. 224–239.

205

